Skip to main content
Log in

Cite this article

Abstract

Background and Purpose

Ischemic stroke is a heterogeneous disease with various etiologies. The current subtyping process is complicated, time-consuming, and costly. Metabolite-based biomarkers have the potential to improve classification and deliver optimal treatments. We here aimed to identify novel, targeted metabolomics-based biomarkers to discriminate between large-artery atherosclerosis (LAA) and cardioembolic (CE) stroke.

Methods

We acquired serum samples and clinical data from a hospital-based acute stroke registry (ischemic stroke within 3 days from symptom onset). We included 346 participants (169 LAA, 147 CE, and 30 healthy older adults) and divided them into training and test sets. Targeted metabolomic analysis was performed using quantitative and quality-controlled liquid chromatography with tandem mass spectrometry. A multivariate regression model using metabolomic signatures was created that could independently distinguish between LAA and CE strokes.

Results

The training set (n = 193) identified metabolomic signatures that were different in patients with LAA and CE strokes. Six metabolomic biomarkers, i.e., lysine, serine, threonine, kynurenine, putrescine, and lysophosphatidylcholine acyl C16:0, could discriminate between LAA and CE stroke after adjusting for sex, age, body mass index, stroke severity, and comorbidities. The enhanced diagnostic power of key metabolite combinations for discriminating between LAA and CE stroke was validated using the test set (n = 123).

Conclusions

We observed significant differences in metabolite profiles in LAA and CE strokes. Targeted metabolomics may provide enhanced diagnostic yield for stroke subtypes. The pathophysiological pathways of the identified metabolites should be explored in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

LAA:

Large-artery atherosclerosis

CE:

Cardioembolic

TOAST:

The Trial of ORG 10172 in Acute Stroke Treatment

rtPA:

Recombinant tissue plasminogen activator

MT:

Mechanical thrombectomy

LC-MS/MS:

Liquid chromatography with tandem mass spectrometry

FDR:

False discovery rate

AUC:

Area under the receiver operating curve

OR:

Odds ratio

CI:

Confidence interval

IDO-1:

Indoleamine 2, 3-dioxygenase 1

KYN/TRP:

Kynurenine/tryptophan ratio

LPC:

Lysophosphatidylcholine

aOR:

Adjusted odds ratio

References

  1. Feigin VL, Stark BA, Johnson CO, Roth GA, Bisignano C, Abady GG, et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20:795–820.

    Article  CAS  Google Scholar 

  2. Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24:35–41.

    Article  PubMed  Google Scholar 

  3. Yaghi S, Bernstein RA, Passman R, Okin PM, Furie KL. Cryptogenic stroke: research and practice. Circ Res. 2017;120:527–40.

    Article  CAS  PubMed  Google Scholar 

  4. Amarenco P, Bogousslavsky J, Caplan L, Donnan G, Hennerici M. Classif stroke Subtypes. Cerebrovasc Dis. 2009;27:493–501.

    CAS  Google Scholar 

  5. Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J, Lombardi-Hill D, et al. 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/American Stroke Association. Stroke. 2021;52:e364–467.

    Article  PubMed  Google Scholar 

  6. Audebert HJ, Saver JL, Starkman S, Lees KR, Endres M. Prehospital stroke care: new prospects for treatment and clinical research. Neurol. 2013;81:501–8.

    Article  CAS  Google Scholar 

  7. Sharobeam A, Jones B, Walton-Sonda D, Lueck CJ. Factors delaying intravenous thrombolytic therapy in acute ischaemic stroke: a systematic review of the literature. J Neurol. 2021;268:2723–34.

    Article  PubMed  Google Scholar 

  8. Yamamoto H, Bogousslavsky J, van Melle G. Different predictors of neurological worsening in different causes of stroke. Arch Neurol. 1998;55:481–6.

    Article  CAS  PubMed  Google Scholar 

  9. Regenhardt RW, Das AS, Lo EH, Caplan LR. Advances in understanding the pathophysiology of lacunar stroke: a review. JAMA Neurol. 2018;75:1273–81.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Johnson C, Kittner S, McCarter R, Sloan M, Stern B, Buchholz D, et al. Interrater reliability of an etiologic classification of ischemic stroke. Stroke. 1995;26:46–51.

    Article  CAS  PubMed  Google Scholar 

  11. Radu RA, Terecoasă EO, Băjenaru OA, Tiu C. Etiologic classification of ischemic stroke: where do we stand? Clin Neurol neurosurg. 2017;159:93–106.

    Article  PubMed  Google Scholar 

  12. Stahrenberg R, Weber-Krüger M, Seegers J, Edelmann F, Lahno R, Haase B, et al. Enhanced detection of paroxysmal atrial fibrillation by early and prolonged continuous holter monitoring in patients with cerebral ischemia presenting in sinus rhythm. Stroke. 2010;41:2884–8.

    Article  PubMed  Google Scholar 

  13. Flach C, Muruet W, Wolfe CD, Bhalla A, Douiri A. Risk and secondary prevention of stroke recurrence: a population-base cohort study. Stroke. 2020;51:2435–44.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17:451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wishart DS. Metabolomics for investigating physiological and pathophysiological processes. Physiol Rev. 2019;99:1819–75.

    Article  CAS  PubMed  Google Scholar 

  16. Yang Q, Zhang A-h, Miao J-h, Sun H, Han Y, Yan G-l, et al. Metabolomics biotechnology, applications, and future trends: a systematic review. RSC Adv. 2019;9:37245–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roberts LD, Souza AL, Gerszten RE, Clish CB. Targeted metabolomics. Curr Protoc Mol Biol. 2012;98(30):2.1–2.24.

    Google Scholar 

  18. Simpkins AN, Janowski M, Oz HS, Roberts J, Bix G, Doré S, et al. Biomarker application for precision medicine in stroke. Transl Stroke Res. 2020;11:615–27.

    Article  PubMed  Google Scholar 

  19. Balasubramanian R, Hu J, Guasch-Ferre M, Li J, Sorond F, Zhao Y, et al. Metabolomic profiles associated with incident ischemic stroke. Neurol. 2022;98:e483–e92.

    Article  CAS  Google Scholar 

  20. Sidorov E, Sanghera DK, Vanamala JK. Biomarker for ischemic stroke using metabolome: a clinician perspective. J Stroke. 2019;21:31.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim DJ, Cho EJ, Yu K-S, Jang I-J, Yoon J-H, Park T, et al. Comprehensive metabolomic search for biomarkers to differentiate early stage hepatocellular carcinoma from cirrhosis. Cancers. 2019;11:1497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim DJ, Oh JY, Rhee CK, Park SJ, Shim JJ, Cho J-Y. Metabolic fingerprinting uncovers the distinction between the phenotypes of tuberculosis associated COPD and smoking-induced COPD. Front in Med. 2021;8:619077.

    Article  Google Scholar 

  23. Petty GW, Brown RD Jr, Whisnant JP, Sicks JD, O'Fallon WM, Wiebers DO. Ischemic stroke subtypes: a population-based study of incidence and risk factors. Stroke. 1999;30:2513–6.

    Article  CAS  PubMed  Google Scholar 

  24. Grau AJ, Weimar C, Buggle F, Heinrich A, Goertler M, Neumaier S, et al. Risk factors, outcome, and treatment in subtypes of ischemic stroke: the German stroke data bank. Stroke. 2001;32:2559–66.

    Article  CAS  PubMed  Google Scholar 

  25. Lodder J, Bamford JM, Sandercock PA, Jones LN, Warlow CP. Are hypertension or cardiac embolism likely causes of lacunar infarction? Stroke. 1990;21:375–81.

    Article  CAS  PubMed  Google Scholar 

  26. Mitta N, Sreedharan SE, Sarma SP, Sylaja PN. Women and stroke: different, yet similar. Cerebrovasc Dis Extra. 2021;11:106–11.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kondoh T, Kameishi M, Mallick HN, Ono T, Torii K. Lysine and arginine reduce the effects of cerebral ischemic insults and inhibit glutamate-induced neuronal activity in rats. Front Integr neurosci. 2010;4:18.

    PubMed  PubMed Central  Google Scholar 

  28. Cheng J, Tang J-C, Pan M-X, Chen S-F, Zhao D, Zhang Y, et al. l-lysine confers neuroprotection by suppressing inflammatory response via microRNA-575/PTEN signaling after mouse intracerebral hemorrhage injury. Exp Neurol. 2020;327:113214.

    Article  CAS  PubMed  Google Scholar 

  29. Arboix A, Alioc J. Cardioembolic stroke: clinical features, specific cardiac disorders and prognosis. Curr Cardiol Rev. 2010;6:150–61.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lee Y, Khan A, Hong S, Jee SH, Park YH. A metabolomic study on high-risk stroke patients determines low levels of serum lysine metabolites: a retrospective cohort study. Mol BioSyst. 2017;13:1109–20.

    Article  CAS  PubMed  Google Scholar 

  31. Ferro JM. Atrial fibrillation and cardioembolic stroke. Minerva Cardioangiol. 2004;52:111–24.

    CAS  PubMed  Google Scholar 

  32. Heijman J, Ghezelbash S, Wehrens XH, Dobrev D. Serine/threonine phosphatases in atrial fibrillation. J Mol Cell Cardiol. 2017;103:110–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heijman J, Dewenter M, El-Armouche A, Dobrev D. Function and regulation of serine/threonine phosphatases in the healthy and diseased heart. J Mol Cell Cardiol. 2013;64:90–8.

    Article  CAS  PubMed  Google Scholar 

  34. Song P, Ramprasath T, Wang H, Zou M-H. Abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases. Cell Mol Life Sci. 2017;74:2899–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gáspár R, Halmi D, Demján V, Berkecz R, Pipicz M, Csont T. Kynurenine Pathway metabolites as potential clinical biomarkers in coronary artery disease. Front in immunol. 2021:12.

  36. Wongpraparut N, Pengchata P, Piyophirapong S, Panchavinnin P, Pongakasira R, Arechep N, et al. Indoleamine 2, 3 dioxygenase (IDO) level as a marker for significant coronary artery disease. BMC Cardiovasc Disord. 2021;21:1–10.

    Article  Google Scholar 

  37. Wang Y, Liu H, McKenzie G, Witting PK, Stasch J-P, Hahn M, et al. Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nat Med. 2010;16:279–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yurdagul A Jr, Kong N, Gerlach BD, Wang X, Ampomah P, Kuriakose G, et al. ODC (ornithine decarboxylase)-dependent putrescine synthesis maintains MerTK (MER tyrosine-protein kinase) expression to drive resolution. Arteriosclerosis, Thromb, Vasc Biol. 2021;41:e144–e59.

    Article  CAS  Google Scholar 

  39. Yurdagul A Jr, Subramanian M, Wang X, Crown SB, Ilkayeva OR, Darville L, et al. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab. 2020;31(518-33):e10.

    Google Scholar 

  40. Soehnlein O, Libby P. Targeting inflammation in atherosclerosis—from experimental insights to the clinic. Nat Rev Drug Discov. 2021;20:589–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Matsumoto T, Kobayashi T, Kamata K. Role of lysophosphatidylcholine (LPC) in atherosclerosis. Curr Med Chem. 2007;14:3209–20.

    Article  CAS  PubMed  Google Scholar 

  42. Schmitz G, Ruebsaamen K. Metabolism and atherogenic disease association of lysophosphatidylcholine. Atherosclerosis. 2010;208:10–8.

    Article  CAS  PubMed  Google Scholar 

  43. Mannheim D, Herrmann J, Versari D, Gössl M, Meyer FB, McConnell JP, et al. Enhanced expression of Lp-PLA2 and lysophosphatidylcholine in symptomatic carotid atherosclerotic plaques. Stroke. 2008;39:1448–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haid M, Muschet C, Wahl S, Römisch-Margl W, Prehn C, Möller G, et al. Long-term stability of human plasma metabolites during storage at -80 °C. J Proteome Res. 2018;17:203–11.

    Article  CAS  PubMed  Google Scholar 

  45. Hustad S, Eussen S, Midttun Ø, Ulvik A, van de Kant PM, Mørkrid L, et al. Kinetic modeling of storage effects on biomarkers related to B vitamin status and one-carbon metabolism. Clin Chem. 2012;58:402–10.

    Article  CAS  PubMed  Google Scholar 

  46. Wagner-Golbs A, Neuber S, Kamlage B, Christiansen N, Bethan B, Rennefahrt U, et al. Effects of long-term storage at -80 °C on the human plasma metabolome. Metabolites. 2019:9.

  47. Yang W, Chen Y, Xi C, Zhang R, Song Y, Zhan Q, et al. Liquid chromatography-tandem mass spectrometry-based plasma metabonomics delineate the effect of metabolites’ stability on reliability of potential biomarkers. Anal Chem. 2013;85:2606–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The bio-specimens and data used for this study were provided by the Biobanks of Seoul National University Hospital and Ajou University Hospital, members of the Korea Biobank Network.

Funding

This work was supported by grants from the National Research Foundation of Korea (NRF), funded by the Korean government (MSIT) (2020R1A2C1100337). The funding agencies had no role in the design of the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joo-Youn Cho or Keun-Hwa Jung.

Ethics declarations

Ethics Approval

This study was approved by the local institutional review board (Seoul National University Hospital IRB No. 2006-077-1131) and was conducted in accordance with the principles of the Declaration of Helsinki. Written informed consent for blood and clinical data collection was obtained from all the participants.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, EJ., Kim, D.J., Kang, DW. et al. Targeted Metabolomic Biomarkers for Stroke Subtyping. Transl. Stroke Res. (2023). https://doi.org/10.1007/s12975-023-01137-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12975-023-01137-5

Keywords

Navigation