Skip to main content

Advertisement

Log in

A Pilot Systematic Review and Meta-analysis of Neuroprotective Studies in Female Rodent Models of Ischemic Stroke

  • Review
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Most ischemic stroke (IS) patients go untreated due to limited treatment windows, restrictive eligibility criteria, and poor availability of current clinical therapies. Neuroprotective treatments targeting protracted neurodegeneration are needed yet keep failing in clinical trials. Over half of IS patients are female, and the scarcity of neuroprotective studies using female animals hinders translational success. This pilot review and meta-analysis assessed the relationship between the risk of bias and efficacy of studies testing post-ischemic neuroprotective therapies using female rodent models of IS. We carried out a systematic search of the PubMed database for studies published between 1999 and May 2022, used the CAMARADES checklist to evaluate study quality, and extracted data pertaining to lesion volume and behavioral assessment. We found that 34 studies met our inclusion criteria, with pooled effect sizes depicting a significant treatment effect. However, researchers used mostly healthy young females, administered therapies within short time windows, ignored hormonal influences, and did not assess long-term outcomes. Interestingly, studies failing to report factors impacting internal validity, such as blinding and random allocation, had inflated effect sizes or did not reach statistical significance. There was also a relationship between low study quality and larger effect sizes for functional outcome, stressing the need to follow the existing translational design, reporting, and data analysis guidelines. In this review, we cover previous recommendations and offer our own in hopes that rigorous and meticulous research using female animal models of IS will increase our chances of successful bench-to-bedside translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the data are available within each publication and in our figures/table. For further inquiries regarding the data extraction, raw data included, and/or analyses, email Dr. Ana Klahr at klahr@ualberta.ca.

References

  1. Phipps MS, Cronin CA. Management of acute ischemic stroke. BMJ. 2020;368:l6983. https://doi.org/10.1136/bmj.l6983.

  2. GBD 2016 Lifetime Risk of Stroke Collaborators; Feigin VL, Nguyen G, Cercy K, Johnson CO, Alam T, et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N Engl J Med. 2018;379:2429–37. https://doi.org/10.1056/NEJMoa1804492.

  3. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke. Stroke. 2019;50:e344-418. https://doi.org/10.1161/STR.0000000000000211.

    Article  PubMed  Google Scholar 

  4. Lahr MMH, Luijckx G-J, Vroomen PCAJ, van der Zee D-J, Buskens E. Proportion of patients treated with thrombolysis in a centralized versus a decentralized acute stroke care setting. Stroke. 2012;43:1336–40. https://doi.org/10.1161/STROKEAHA.111.641795.

    Article  CAS  PubMed  Google Scholar 

  5. Katzan IL, Hammer MD, Hixson ED, Furlan AJ, Abou-Chebl A, Nadzam DM. Utilization of intravenous tissue plasminogen activator for acute ischemic stroke. Arch Neurol. 2004;61:346–50. https://doi.org/10.1001/archneur.61.3.346.

    Article  PubMed  Google Scholar 

  6. Fang MC, Cutler DM, Rosen AB. Trends in thrombolytic use for ischemic stroke in the United States. J Hosp Med. 2010;5:406–9. https://doi.org/10.1002/jhm.689.

    Article  PubMed  Google Scholar 

  7. Di Lorenzo R, Saqqur M, Buletko AB, Handshoe LS, Mulpur B, Hardman J, et al. IV tPA given in the golden hour for emergent large vessel occlusion stroke improves recanalization rates and clinical outcomes. J Neurol Sci. 2021;428:117580. https://doi.org/10.1016/j.jns.2021.117580.

    Article  PubMed  Google Scholar 

  8. Eissa A, Krass I, Levi C, Sturm J, Ibrahim R, Bajorek B. Understanding the reasons behind the low utilisation of thrombolysis in stroke. Australas Med J. 2013;6:152–67. https://doi.org/10.4066/AMJ.2013.1607.

    Article  PubMed  PubMed Central  Google Scholar 

  9. El TS, Cheripelli B, Huang X, Moreton F, Kalladka D, MacDougal NJ, et al. How many stroke patients might be eligible for mechanical thrombectomy? Eur Stroke J. 2016;1:264–71. https://doi.org/10.1177/2396987316667176.

    Article  Google Scholar 

  10. Corbett D, Carmichael ST, Murphy TH, Jones TA, Schwab ME, Jolkkonen J, et al. Enhancing the alignment of the preclinical and clinical stroke recovery research pipeline: consensus-based core recommendations from the stroke recovery and rehabilitation roundtable translational working group. Neurorehabil Neural Repair. 2017;31:699–707. https://doi.org/10.1177/1545968317724285.

    Article  PubMed  Google Scholar 

  11. Seyhan AA. Lost in translation: the valley of death across preclinical and clinical divide – identification of problems and overcoming obstacles. Transl Med Commun. 2019;4:18. https://doi.org/10.1186/s41231-019-0050-7.

    Article  Google Scholar 

  12. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59:467–77. https://doi.org/10.1002/ana.20741.

    Article  CAS  PubMed  Google Scholar 

  13. Macleod MR, O’Collins T, Howells DW, Donnan GA. Pooling of animal experimental data reveals influence of study design and publication bias. Stroke. 2004;35:1203–8. https://doi.org/10.1161/01.STR.0000125719.25853.20.

    Article  PubMed  Google Scholar 

  14. Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies. Exp Neurol. 2021;335:113518. https://doi.org/10.1016/j.expneurol.2020.113518.

  15. Savitz SI, Baron J-C, Fisher M, STAIR X Consortium. Stroke treatment academic industry roundtable X: brain cytoprotection therapies in the reperfusion era. Stroke. 2019;50:1026–31. https://doi.org/10.1161/STROKEAHA.118.023927.

    Article  PubMed  Google Scholar 

  16. Kringe L, Sena ES, Motschall E, Bahor Z, Wang Q, Herrmann AM, et al. Quality and validity of large animal experiments in stroke: a systematic review. J Cereb Blood Flow Metab. 2020;40:2152–64. https://doi.org/10.1177/0271678X20931062.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dirnagl U. Bench to bedside: the quest for quality in experimental stroke research. J Cereb Blood Flow Metab. 2006;26:1465–78. https://doi.org/10.1038/sj.jcbfm.9600298.

    Article  PubMed  Google Scholar 

  18. Crossley NA, Sena E, Goehler J, Horn J, Van Der Worp B, Bath PMW, et al. Empirical evidence of bias in the design of experimental stroke studies: a metaepidemiologic approach. Stroke. 2008;39:929–34. https://doi.org/10.1161/STROKEAHA.107.498725.

    Article  PubMed  Google Scholar 

  19. Liddle LJ, Ralhan S, Ward DL, Colbourne F. Translational intracerebral hemorrhage research: has current neuroprotection research arrived at a atandard for experimental design and reporting? Transl Stroke Res. 2020;11:1203–13. https://doi.org/10.1007/s12975-020-00824-x.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 2009;40:2244–50. https://doi.org/10.1161/STROKEAHA.108.541128.Update.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Beery AK. Inclusion of females does not increase variability in rodent research studies. Curr Opin Behav Sci. 2018;23:143–9. https://doi.org/10.1016/j.cobeha.2018.06.016.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Herson PS, Traystman RJ. Animal models of stroke: translational potential at present and in 2050. Future Neurol. 2014;9:541–51. https://doi.org/10.2217/fnl.14.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van der Worp HB, Sena ES, Donnan GA, Howells DW, Macleod MR. Hypothermia in animal models of acute ischaemic stroke: a systematic review and meta-analysis. Brain. 2007;130:3063–74. https://doi.org/10.1093/brain/awm083.

    Article  PubMed  Google Scholar 

  24. Aliena-Valero A, Baixauli-Martín J, Castelló-Ruiz M, Torregrosa G, Hervás D, Salom JB. Effect of uric acid in animal models of ischemic stroke: a systematic review and meta-analysis. J Cereb Blood Flow Metab. 2020;41:707–22. https://doi.org/10.1177/0271678X20967459.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liddle LJ, Dirks CA, Fedor BA, Almekhlafi M, Colbourne F. A systematic review and meta-analysis of animal studies testing intra-arterial chilled infusates after ischemic stroke. Front Neurol. 2020;11:588479. https://doi.org/10.3389/fneur.2020.588479.

    Article  PubMed  Google Scholar 

  26. England TJ, Hind WH, Rasid NA, O’Sullivan SE. Cannabinoids in experimental stroke: a systematic review and meta-analysis. J Perinatol. 2015;35:348–58. https://doi.org/10.1038/jcbfm.2014.218.

    Article  CAS  Google Scholar 

  27. Zhu X, Fréchou M, Liere P, Zhang S, Pianos A, Fernandez N, et al. A role of endogenous progesterone in stroke cerebroprotection revealed by the neural-specific deletion of its intracellular receptors. J Neurosci. 2017;37:10998–1020. https://doi.org/10.1523/JNEUROSCI.3874-16.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Toung TJ, Chen T-Y, Littleton-Kearney MT, Hurn PD, Murphy SJ. Effects of combined estrogen and progesterone on brain infarction in reproductively senescent female rats. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2004;24:1160–6. https://doi.org/10.1097/01.WCB.0000135594.13576.D2.

    Article  CAS  Google Scholar 

  29. Guo H, Liu M, Zhang L, Wang L, Hou W, Ma Y, et al. The critical period for neuroprotection by estrogen replacement therapy and the potential underlying mechanisms. Curr Neuropharmacol. 2020;18:485–500. https://doi.org/10.2174/1570159X18666200123165652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Simpkins JW, Singh M, Brock C, Etgen AM. Neuroprotection and estrogen receptors. Neuroendocrinology. 2012;96:119–30. https://doi.org/10.1159/000338409.

    Article  CAS  PubMed  Google Scholar 

  31. Wong R, Renton C, Gibson CL, Murphy SJ, Kendall DA, Bath PMW. Progesterone treatment for experimental stroke: an individual animal meta-analysis. J Cereb Blood Flow Metab. 2013;33:1362–72. https://doi.org/10.1038/jcbfm.2013.120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sohrabji F, Park MJ, Mahnke AH. Sex differences in stroke therapies. J Neurosci Res. 2017;95:681–91. https://doi.org/10.1002/jnr.23855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Spychala MS, Honarpisheh P, McCullough LD. Sex differences in neuroinflammation and neuroprotection in ischemic stroke. J Neurosci Res. 2017;95:462–71. https://doi.org/10.1002/jnr.23962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barthels D, Das H. Current advances in ischemic stroke research and therapies. Biochim Biophys Acta - Mol Basis Dis. 2020;1866:165260. https://doi.org/10.1016/j.bbadis.2018.09.012.

    Article  CAS  PubMed  Google Scholar 

  35. Lapchak PA, Zhang JH, Noble-Haeusslein LJ. RIGOR guidelines: escalating STAIR and STEPS for effective translational research. Transl Stroke Res. 2013;4:279–85. https://doi.org/10.1007/s12975-012-0209-2.

    Article  PubMed  Google Scholar 

  36. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG. National Centre for the replacement R and R of A in R. Animal research: reporting in vivo experiments–the ARRIVE guidelines. J Cereb Blood Flow Metab. 2011;31:991–3. https://doi.org/10.1038/jcbfm.2010.220.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLOS Biol. 2010;8:e1000412.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Macleod MR, Fisher M, O’Collins V, Sena ES, Dirnagl U, Bath PMW, et al. Good laboratory practice: preventing introduction of bias at the bench. Stroke. 2009;40:e50–2. https://doi.org/10.1161/STROKEAHA.108.525386.

    Article  PubMed  Google Scholar 

  39. Sena E, van der Worp HB, Howells D, Macleod M. How can we improve the pre-clinical development of drugs for stroke? Trends Neurosci. 2007;30:433–9. https://doi.org/10.1016/j.tins.2007.06.009.

    Article  CAS  PubMed  Google Scholar 

  40. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, The PRISMA, et al. statement: an updated guideline for reporting systematic reviews. BMJ. 2020;2021:372. https://doi.org/10.1136/bmj.n71.

    Article  Google Scholar 

  41. Muka T, Glisic M, Milic J, Verhoog S, Bohlius J, Bramer W, et al. A 24-step guide on how to design, conduct, and successfully publish a systematic review and meta-analysis in medical research. Eur J Epidemiol. 2020;35:49–60. https://doi.org/10.1007/s10654-019-00576-5.

    Article  PubMed  Google Scholar 

  42. McHugh ML. Interrater reliability: the kappa statistic. Biochem Medica. 2012;22:276–82.

    Article  Google Scholar 

  43. Vesterinen HM, Sena ES, Egan KJ, Hirst TC, Churolov L, Currie GL, et al. Meta-analysis of data from animal studies: a practical guide. J Neurosci Methods. 2014;221:92–102. https://doi.org/10.1016/j.jneumeth.2013.09.010.

    Article  CAS  PubMed  Google Scholar 

  44. Vahidinia Z, Karimian M, Joghataei MT. Neurosteroids and their receptors in ischemic stroke: from molecular mechanisms to therapeutic opportunities. Pharmacol Res. 2020;160:105163. https://doi.org/10.1016/j.phrs.2020.105163.

    Article  CAS  PubMed  Google Scholar 

  45. Cruz G, Fernandois D, Paredes AH. Ovarian function and reproductive senescence in the rat: role of ovarian sympathetic innervation. Reproduction. 2017;153:R59-68. https://doi.org/10.1530/REP-16-0117.

    Article  CAS  PubMed  Google Scholar 

  46. Kaur H, Prakash A, Medhi B. Drug therapy in stroke: from preclinical to clinical studies. Pharmacology. 2014;92:324–34. https://doi.org/10.1159/000356320.

    Article  CAS  Google Scholar 

  47. Klahr AC. Colbourne F Neuroprotectants: temperature. 2017. https://doi.org/10.1016/B978-0-12-803058-5.00040-0.

    Article  Google Scholar 

  48. Klahr AC, Nadeau CA, Colbourne F. Temperature control in rodent neuroprotection studies: methods and challenges. Ther Hypothermia Temp Manag. 2017;7:42–9. https://doi.org/10.1089/ther.2016.0018.

    Article  PubMed  Google Scholar 

  49. Melmed KR, Lyden PD. Meta-analysis of pre-clinical trials of therapeutic hypothermia for intracerebral hemorrhage. Ther Hypothermia Temp Manag. 2017;7:141–6. https://doi.org/10.1089/ther.2016.0033.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bell JD. In vogue: ketamine for neuroprotection in acute neurologic injury. Anesth Analg. 2017;124:1237–43. https://doi.org/10.1213/ANE.0000000000001856.

    Article  CAS  PubMed  Google Scholar 

  51. Wu S, Yuan R, Wang Y, Wei C, Zhang S, Yang X, et al. Early prediction of malignant brain edema after ischemic stroke. Stroke. 2018;49:2918–27. https://doi.org/10.1161/STROKEAHA.118.022001.

    Article  PubMed  Google Scholar 

  52. Fisher M. Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke. 1999;30:2752–8. https://doi.org/10.1161/01.STR.30.12.2752.

    Article  Google Scholar 

  53. Cora MC, Kooistra L, Travlos G. Vaginal cytology of the laboratory rat and mouse: review and criteria for the staging of the estrous cycle using stained vaginal smears. Toxicol Pathol. 2015;43:776–93. https://doi.org/10.1177/0192623315570339.

    Article  CAS  PubMed  Google Scholar 

  54. Carswell HV, Dominiczak AF, Macrae IM. Estrogen status affects sensitivity to focal cerebral ischemia in stroke-prone spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2000;278:H290–4. https://doi.org/10.1152/ajpheart.2000.278.1.H290.

    Article  CAS  PubMed  Google Scholar 

  55. Toung TK, Hurn PD, Traystman RJ, Sieber FE. Estrogen decreases infarct size after temporary focal ischemia in a genetic model of type 1 diabetes mellitus. Stroke. 2000;31:2701–6. https://doi.org/10.1161/01.str.31.11.2701.

    Article  CAS  PubMed  Google Scholar 

  56. Selvamani A, Sohrabji F. Reproductive age modulates the impact of focal ischemia on the forebrain as well as the effects of estrogen treatment in female rats. Neurobiol Aging. 2010;31:1618–28. https://doi.org/10.1016/j.neurobiolaging.2008.08.014.

    Article  CAS  PubMed  Google Scholar 

  57. Gibson CL, Gray LJ, Murphy SP, Bath PMW. Estrogens and experimental ischemic stroke: a systematic review. J Cereb Blood Flow Metab. 2006;26:1103–13. https://doi.org/10.1038/sj.jcbfm.9600270.

    Article  CAS  PubMed  Google Scholar 

  58. Koebele SV, Bimonte-Nelson HA. Modeling menopause: the utility of rodents in translational behavioral endocrinology research. Maturitas. 2016;87:5–17. https://doi.org/10.1016/j.maturitas.2016.01.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ström JO, Theodorsson A, Ingberg E, Isaksson IM, Theodorsson E. Ovariectomy and 17β-estradiol replacement in rats and mice: a visual demonstration. J Vis Exp. 2012;64:e4013. https://doi.org/10.3791/4013.

  60. Tanaka M, Ogaeri T, Samsonov M, Sokabe M. Progesterone improves functional outcomes after transient focal cerebral ischemia in both aged male and female rats. Exp Gerontol. 2018;113:29–35. https://doi.org/10.1016/j.exger.2018.09.012.

    Article  CAS  PubMed  Google Scholar 

  61. Schmidt-Pogoda A, Bonberg N, Koecke MHM, Strecker JK, Wellmann J, Bruckmann NM, et al. Why most acute stroke studies are positive in animals but not in patients: a systematic comparison of preclinical, early phase, and phase 3 clinical trials of neuroprotective agents. Ann Neurol. 2020;87:40–51. https://doi.org/10.1002/ana.25643.

    Article  CAS  PubMed  Google Scholar 

  62. Davis NW, Bailey M, Buchwald N, Farooqui A, Khanna A. Factors that influence door-to-needle administration for acute stroke patients in the emergency department. J Neurosci Nurs J Am Assoc Neurosci Nurses. 2021;53:134–9. https://doi.org/10.1097/JNN.0000000000000590.

    Article  Google Scholar 

  63. Rimmele DL, Thomalla G. Wake-up stroke: clinical characteristics, imaging findings, and treatment option - an update. Front Neurol. 2014;5:35. https://doi.org/10.3389/fneur.2014.00035.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Lane Liddle’s advice (Colbourne lab) on extracting data from figures when it was not available.

Author information

Authors and Affiliations

Authors

Contributions

M.L.G. and A.C.K wrote the manuscript, ran the statistical analyses, and made the tables and figures. M.L.G. and S.H. screened the articles, performed the risk of bias assessment, and extracted data for the meta-analyses. All the authors reviewed the final manuscript.

Corresponding author

Correspondence to Ana C. Klahr.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

Authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1903 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunderson, M.L., Heer, S. & Klahr, A.C. A Pilot Systematic Review and Meta-analysis of Neuroprotective Studies in Female Rodent Models of Ischemic Stroke. Transl. Stroke Res. 15, 364–377 (2024). https://doi.org/10.1007/s12975-023-01134-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-023-01134-8

Keywords

Navigation