Skip to main content

Advertisement

Log in

Exercise Improves Cerebral Blood Flow and Functional Outcomes in an Experimental Mouse Model of Vascular Cognitive Impairment and Dementia (VCID)

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Vascular cognitive impairment and dementia (VCID) are a growing threat to public health without any known treatment. The bilateral common carotid artery stenosis (BCAS) mouse model is valid for VCID. Previously, we have reported that remote ischemic postconditioning (RIPostC) during chronic cerebral hypoperfusion (CCH) induced by BCAS increases cerebral blood flow (CBF), improves cognitive function, and reduces white matter damage. We hypothesized that physical exercise (EXR) would augment CBF during CCH and prevent cognitive impairment in the BCAS model. BCAS was performed in C57/B6 mice of both sexes to establish CCH. One week after the BCAS surgery, mice were randomized to treadmill exercise once daily or no EXR for four weeks. CBF was monitored with an LSCI pre-, post, and 4 weeks post-BCAS. Cognitive testing was performed for post-BCAS after exercise training, and brain tissue was harvested for histopathology and biochemical test. BCAS led to chronic hypoperfusion resulting in impaired cognitive function and other functional outcomes. Histological examination revealed that BCAS caused changes in neuronal morphology and cell death in the cortex and hippocampus. Immunoblotting showed that BCAS was associated with a significant downregulate of AMPK and pAMPK and NOS3 and pNOS3. BCAS also decreased red blood cell (RBC) deformability. EXR therapy increased and sustained improved CBF and cognitive function, muscular strength, reduced cell death, and loss of white matter. EXR is effective in the BCAS model, improving CBF and cognitive function, reducing white matter damage, improving RBC deformability, and increasing RBC NOS3 and AMPK. The mechanisms by which EXR improves CBF and attenuates tissue damage need further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

1MO :

One month

AMPK :

Adenosine monophosphate-activated protein kinase

BCAS :

Bilateral carotid artery stenosis

CBF:

Cerebral blood flow

CCAs :

Common carotid arteries

C-EXR :

Chronic exercise or regular exercise

CCH :

Chronic cerebral hypoperfusion

DTI:

Diffusion tensor imaging

EXR :

Exercise

FAIR:

Flow sensitive alternating inversion recovery

eNOS/NOS3 :

Endothelial nitric oxide synthase

pAMPK :

Phospho-AMPK

peNOS/pNOS3 :

Phospho-eNOS or Phospho-NOS3

LSCI :

Laser speckle contrast imager

LFB :

Luxol fast blue

NO :

Nitric oxide

RBC :

Red blood cells

VCID :

Vascular contributions to cognitive impairment and dementia or vascular cognitive impairment and dementia

WM :

White matter

References

  1. Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80(4):844–66.

    Article  CAS  PubMed  Google Scholar 

  2. Snyder HM, Corriveau RA, Craft S, Faber JE, Greenberg SM, Knopman D, et al. Vascular contributions to cognitive impairment and dementia including Alzheimer’s disease. Alzheimer’s & Dementia: The J Alzheimer’s Ass. 2015;11(6):710–7.

    Article  Google Scholar 

  3. Iadecola C. The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol. 2010;120(3):287–96.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bernbaum M, Menon BK, Fick G, Smith EE, Goyal M, Frayne R, et al. Reduced blood flow in normal white matter predicts development of leukoaraiosis. J Cereb Blood Flow and Metabol : Official J Int Soc Cereb Blood Flow Metabol. 2015;35(10):1610–5.

    Article  CAS  Google Scholar 

  5. Promjunyakul N, Lahna D, Kaye JA, Dodge HH, Erten-Lyons D, Rooney WD, et al. Characterizing the white matter hyperintensity penumbra with cerebral blood flow measures. NeuroImage Clinical. 2015;8:224–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Verdelho A, Madureira S, Ferro JM, Baezner H, Blahak C, Poggesi A, et al. Physical activity prevents progression for cognitive impairment and vascular dementia: results from the LADIS (Leukoaraiosis and Disability) study. Stroke. 2012;43(12):3331–5.

    Article  PubMed  Google Scholar 

  7. O’Sullivan M, Lythgoe DJ, Pereira AC, Summers PE, Jarosz JM, Williams SC, et al. Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis. Neurology. 2002;59(3):321–6.

    Article  CAS  PubMed  Google Scholar 

  8. van Praag H, Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci. 2005;25(38):8680–5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kramer AF, Erickson KI, Colcombe SJ. (2006) Exercise, cognition, and the aging brain. J Appl Physiol 1985. 2006;101(4):1237–42.

    PubMed  Google Scholar 

  10. Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30(9):464–72.

    Article  CAS  PubMed  Google Scholar 

  11. Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA. 2008;300(9):1027–37.

    Article  CAS  PubMed  Google Scholar 

  12. Middleton LE, Mitnitski A, Fallah N, Kirkland SA, Rockwood K. Changes in cognition and mortality in relation to exercise in late life: a population based study. PLoS ONE. 2008;3(9): e3124.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  13. Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67(1):71–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stranahan AM, Lee K, Becker KG, Zhang Y, Maudsley S, Martin B, et al. Hippocampal gene expression patterns underlying the enhancement of memory by running in aged mice. Neurobiol Aging. 2010;31(11):1937–49.

    Article  CAS  PubMed  Google Scholar 

  15. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA. 2011;108(7):3017–22.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Stranahan AM, Khalil D, Gould E. Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus. 2007;17(11):1017–22.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moser MB, Moser EI. Functional differentiation in the hippocampus. Hippocampus. 1998;8(6):608–19.

    Article  CAS  PubMed  Google Scholar 

  18. Wittenberg GM, Tsien JZ. An emerging molecular and cellular framework for memory processing by the hippocampus. Trends Neurosci. 2002;25(10):501–5.

    Article  CAS  PubMed  Google Scholar 

  19. Eichenbaum H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron. 2004;44(1):109–20.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  20. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43(11):3063–70.

    Article  CAS  PubMed  Google Scholar 

  21. Zhong Y, Gu L, Ye Y, Zhu H, Pu B, Wang J, et al. JAK2/STAT3 Axis Intermediates Microglia/Macrophage Polarization During Cerebral Ischemia/Reperfusion Injury. Neuroscience. 2022;496:119–28.

    Article  CAS  PubMed  Google Scholar 

  22. Luo XQ, Li A, Yang X, Xiao X, Hu R, Wang TW, et al. Paeoniflorin exerts neuroprotective effects by modulating the M1/M2 subset polarization of microglia/macrophages in the hippocampal CA1 region of vascular dementia rats via cannabinoid receptor 2. Chin Med. 2018;13:14.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Baek KW, Lee DI, Jeong MJ, Kang SA, Choe Y, Yoo JI, et al. Effects of lifelong spontaneous exercise on the M1/M2 macrophage polarization ratio and gene expression in adipose tissue of super-aged mice. Exp Gerontol. 2020;141:111091.

    Article  CAS  PubMed  Google Scholar 

  24. Kawanishi N, Yano H, Yokogawa Y, Suzuki K. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc Immunol Rev. 2010;16:105–18.

    PubMed  Google Scholar 

  25. Miron VE, Franklin RJ. Macrophages and CNS remyelination. J Neurochem. 2014;130(2):165–71.

    Article  CAS  PubMed  Google Scholar 

  26. Bink DI, Ritz K, Aronica E, van der Weerd L, Daemen MJ. Mouse models to study the effect of cardiovascular risk factors on brain structure and cognition. J Cereb Blood Flow Metabol : Official J Int Soc Cereb Blood Flow Metabol. 2013;33(11):1666–84.

    Article  Google Scholar 

  27. Holland PR, Searcy JL, Salvadores N, Scullion G, Chen G, Lawson G, et al. Gliovascular disruption and cognitive deficits in a mouse model with features of small vessel disease. J Cereb Blood Flow Metabol : Official J Int Soc Cerebral Blood Flow and Metabol. 2015;35(6):1005–14.

    Article  Google Scholar 

  28. Khan MB, Hafez S, Hoda MN, Baban B, Wagner J, Awad ME, et al. Chronic remote ischemic conditioning is cerebroprotective and induces vascular remodeling in a VCID model. Transl Stroke Res. 2018;9(1):51–63.

    Article  CAS  PubMed  Google Scholar 

  29. Shibata M, Ohtani R, Ihara M, Tomimoto H. White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke. 2004;35(11):2598–603.

    Article  PubMed  Google Scholar 

  30. Khan MB, Hoda MN, Vaibhav K, Giri S, Wang P, Waller JL, et al. Remote ischemic postconditioning: harnessing endogenous protection in a murine model of vascular cognitive impairment. Transl Stroke Res. 2015;6(1):69–77.

    Article  PubMed  Google Scholar 

  31. Li Y, Kim J. CB2 Cannabinoid receptor knockout in mice impairs contextual long-term memory and enhances spatial working memory. Neural Plast. 2016;2016:9817089.

    Article  PubMed  Google Scholar 

  32. Luong TN, Carlisle HJ, Southwell A, Patterson PH. Assessment of motor balance and coordination in mice using the balance beam. J Vis Exp. 2011;(49):2376. https://doi.org/10.3791/2376.

  33. Klein SM, Vykoukal J, Lechler P, Zeitler K, Gehmert S, Schreml S, et al. Noninvasive in vivo assessment of muscle impairment in the mdx mouse model—a comparison of two common wire hanging methods with two different results. J Neurosci Methods. 2012;203(2):292–7.

    Article  CAS  PubMed  Google Scholar 

  34. Cacicedo JM, Gauthier MS, Lebrasseur NK, Jasuja R, Ruderman NB, Ido Y. Acute exercise activates AMPK and eNOS in the mouse aorta. Am J Physiol Heart Circ Physiol. 2011;301(4):H1255–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hafez S, Khan MB, Awad ME, Wagner JD, Hess DC. Short-term acute exercise preconditioning reduces neurovascular injury after stroke through induced eNOS activation. Transl Stroke Res. 2020;11(4):851–60.

    Article  CAS  PubMed  Google Scholar 

  36. Braun M, Khan ZT, Khan MB, Kumar M, Ward A, Achyut BR, et al. Selective activation of cannabinoid receptor-2 reduces neuroinflammation after traumatic brain injury via alternative macrophage polarization. Brain Behav Immun. 2018;68:224–37.

    Article  CAS  PubMed  Google Scholar 

  37. Fulton D, Harris MB, Kemp BE, Venema RC, Marrero MB, Stepp DW. Insulin resistance does not diminish eNOS expression, phosphorylation, or binding to HSP-90. Am J Physiol Heart Circ Physiol. 2004;287(6):H2384–93.

    Article  CAS  PubMed  Google Scholar 

  38. Arbab AS, Aoki S, Toyama K, Kumagai H, Arai T, Araki T. Brain perfusion measured by FAIR and contrast-enhanced MRI imaging: comparison with nuclear medicine technique. Radiology. 1999;213:297.

    Google Scholar 

  39. Arbab AS, Aoki S, Toyama K, Miyazawa N, Araki T, Kumagai H. Is quantitative measurement of regional cerebral blood flow by flow-sensitive-alternating-inversion-recovery (FAIR) images acceptable as a substitute to nuclear medicine studies? Radiology. 2000;217:453.

    Google Scholar 

  40. Arbab AS, Aoki S, Toyama K, Kumagai H, Arai T, Kabasawa H, et al. Brain perfusion measured by flow-sensitive alternating inversion recovery (FAIR) and dynamic susceptibility contrast-enhanced magnetic resonance imaging: comparison with nuclear medicine technique. Eur Radiol. 2001;11(4):635–41.

    Article  CAS  PubMed  Google Scholar 

  41. Webb RL, Kaiser EE, Scoville SL, Thompson TA, Fatima S, Pandya C, et al. Human neural stem cell extracellular vesicles improve tissue and functional recovery in the murine thromboembolic stroke model. Transl Stroke Res. 2018;9(5):530–9.

    Article  CAS  PubMed  Google Scholar 

  42. Nigam SM, Xu S, Kritikou JS, Marosi K, Brodin L, Mattson MP. Exercise and BDNF reduce Aβ production by enhancing α-secretase processing of APP. J Neurochem. 2017;142(2):286–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gratuze M, Julien J, Morin F, Marette A, Planel E. Differential effects of voluntary treadmill exercise and caloric restriction on tau pathogenesis in a mouse model of Alzheimer’s disease-like tau pathology fed with Western diet. Prog Neuropsychopharmacol Biol Psychiatry. 2017;79(Pt B):452–61.

    Article  CAS  PubMed  Google Scholar 

  44. Baek SS, Kim SH. Treadmill exercise ameliorates symptoms of Alzheimer disease through suppressing microglial activation-induced apoptosis in rats. J Exerc Rehabil. 2016;12(6):526–34.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Maejima H, Kanemura N, Kokubun T, Murata K, Takayanagi K. Exercise enhances cognitive function and neurotrophin expression in the hippocampus accompanied by changes in epigenetic programming in senescence-accelerated mice. Neurosci Lett. 2018;665:67–73.

    Article  CAS  PubMed  Google Scholar 

  46. Parrini M, Ghezzi D, Deidda G, Medrihan L, Castroflorio E, Alberti M, et al. Aerobic exercise and a BDNF-mimetic therapy rescue learning and memory in a mouse model of Down syndrome. Sci Rep. 2017;7(1):16825.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  47. Zhuang L, Sachdev PS, Trollor JN, Kochan NA, Reppermund S, Brodaty H, et al. Microstructural white matter changes in cognitively normal individuals at risk of amnestic MCI. Neurology. 2012;79(8):748–54.

    Article  PubMed  Google Scholar 

  48. Zhuang L, Sachdev PS, Trollor JN, Reppermund S, Kochan NA, Brodaty H, et al. Microstructural white matter changes, not hippocampal atrophy, detect early amnestic mild cognitive impairment. PLoS ONE. 2013;8(3):e58887.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Zhang L, Chao FL, Luo YM, Xiao Q, Jiang L, Zhou CN, et al. Exercise prevents cognitive function decline and demyelination in the white matter of APP/PS1 transgenic AD mice. Curr Alzheimer Res. 2017;14(6):645–55.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Y, Chao FL, Zhou CN, Jiang L, Zhang L, Chen LM, et al. Effects of exercise on capillaries in the white matter of transgenic AD mice. Oncotarget. 2017;8(39):65860–75.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jiang T, Zhang L, Pan X, Zheng H, Chen X, Li L, et al. Physical exercise improves cognitive function together with microglia phenotype modulation and remyelination in chronic cerebral gypoperfusion. Front Cell Neurosci. 2017;11:404.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lee JM, Park JM, Song MK, Oh YJ, Kim CJ, Kim YJ. The ameliorative effects of exercise on cognitive impairment and white matter injury from blood-brain barrier disruption induced by chronic cerebral hypoperfusion in adolescent rats. Neurosci Lett. 2017;638:83–9.

    Article  CAS  PubMed  Google Scholar 

  53. Trigiani LJ, Lacalle-Aurioles M, Bourourou M, Li L, Greenhalgh AD, Zarruk JG, et al. Benefits of physical exercise on cognition and glial white matter pathology in a mouse model of vascular cognitive impairment and dementia. Glia. 2020;68(9):1925–40.

    Article  PubMed  Google Scholar 

  54. Leardini-Tristão M, Borges JP, Freitas F, Rangel R, Daliry A, Tibiriçá E, et al. The impact of early aerobic exercise on brain microvascular alterations induced by cerebral hypoperfusion. Brain Res. 2017;1657:43–51.

    Article  PubMed  Google Scholar 

  55. Holland PR, Bastin ME, Jansen MA, Merrifield GD, Coltman RB, Scott F, et al. MRI is a sensitive marker of subtle white matter pathology in hypoperfused mice. Neurobiol Aging. 2011;32(12):2325.e1-6.

    Article  PubMed  Google Scholar 

  56. Ohtomo R, Kinoshita K, Ohtomo G, Takase H, Hamanaka G, Washida K, et al. Treadmill exercise suppresses cognitive decline and increases white matter oligodendrocyte precursor cells in a mouse model of prolonged cerebral hypoperfusion. Transl Stroke Res. 2020;11(3):496–502.

    Article  PubMed  Google Scholar 

  57. Chien S. Red cell deformability and its relevance to blood flow. Annu Rev Physiol. 1987;49:177–92.

    Article  CAS  PubMed  ADS  Google Scholar 

  58. Suhr F, Brenig J, Müller R, Behrens H, Bloch W, Grau M. Moderate exercise promotes human RBC-NOS activity, NO production and deformability through Akt kinase pathway. PLoS ONE. 2012;7(9):e45982.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  59. Grau M, Kollikowski A, Bloch W. Remote ischemia preconditioning increases red blood cell deformability through red blood cell-nitric oxide synthase activation. Clin Hemorheol Microcirc. 2016;63(3):185–97.

    Article  CAS  PubMed  Google Scholar 

  60. Yamazaki M, Uchiyama S, Iwata M. Measurement of platelet fibrinogen binding and p-selectin expression by flow cytometry in patients with cerebral infarction. Thromb Res. 2001;104(3):197–205.

    Article  CAS  PubMed  Google Scholar 

  61. Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev. 2014;47:485–505.

    Article  CAS  PubMed  Google Scholar 

  62. Wang G, Shi Y, Jiang X, Leak RK, Hu X, Wu Y, et al. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc Natl Acad Sci U S A. 2015;112(9):2853–8.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  63. Stanford KI, Takahashi H, So K, Alves-Wagner AB, Prince NB, Lehnig AC, et al. Maternal exercise improves glucose tolerance in female offspring. Diabetes. 2017;66(8):2124–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McMullan RC, Kelly SA, Hua K, Buckley BK, Faber JE, Pardo-Manuel de Villena F, et al. Long-term exercise in mice has sex-dependent benefits on body composition and metabolism during aging. Physiol Rep. 2016;4(21):e13011. https://doi.org/10.14814/phy2.13011.

  65. Herson PS, Palmateer J, Hurn PD. Biological sex and mechanisms of ischemic brain injury. Transl Stroke Res. 2013;4(4):413–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to thank Drs. Roxan Ara and Asamoah Bosomtwi of small animal imaging core at Georgia Cancer Center for their help acquiring MR images.

Funding

This work was supported by NIH Award R01 NS099455, 1U01Ns113356, and R01 NS112511 to David C. Hess.

Author information

Authors and Affiliations

Authors

Contributions

M.B.K., H.A., S.S. conceptualized, designed, performed experiments, analyzed data, and wrote the manuscript. H.A. performed exercise and behavioral experiments. S.S. performed exercise, western blot, and assisted with performing and analyzing behavioral tasks. M.F.S and A.S. performed behavioral analysis. B. B. performed flow cytometry experiments. A.S.A. analyses MRI data. D.C.H. and A.S.A assisted with the experimental design and editing of the manuscript with data interpretation.

Corresponding author

Correspondence to Mohammad Badruzzaman Khan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

All applicable national and institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1877 KB)

Supplementary file2 (PDF 2995 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.B., Alam, H., Siddiqui, S. et al. Exercise Improves Cerebral Blood Flow and Functional Outcomes in an Experimental Mouse Model of Vascular Cognitive Impairment and Dementia (VCID). Transl. Stroke Res. 15, 446–461 (2024). https://doi.org/10.1007/s12975-023-01124-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-023-01124-w

Keywords

Navigation