Skip to main content

Advertisement

Log in

Revisiting Transcranial Light Stimulation as a Stroke Therapeutic—Hurdles and Opportunities

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Near-infrared laser therapy, a special form of transcranial light therapy, has been tested as an acute stroke therapy in three large clinical trials. While the NEST trials failed to show the efficacy of light therapy in human stroke patients, there are many lingering questions and lessons that can be learned. In this review, we summarize the putative mechanism of light stimulation in the setting of stroke, highlight barriers, and challenges during the translational process, and evaluate light stimulation parameters, dosages and safety issues, choice of outcomes, effect size, and patient selection criteria. In the end, we propose potential future opportunities with transcranial light stimulation as a cerebroprotective or restorative tool for future stroke treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Warner JJ, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke. Stroke. 2019;50(12):3331–2.

    Article  PubMed  Google Scholar 

  2. Lampl Y, et al. Infrared laser therapy for ischemic stroke: a new treatment strategy: results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1). Stroke. 2007;38(6):1843–9.

    Article  PubMed  Google Scholar 

  3. Zivin JA, et al. Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke. 2009;40(4):1359–64.

    Article  PubMed  Google Scholar 

  4. Hacke W, et al. Transcranial laser therapy in acute stroke treatment: results of neurothera effectiveness and safety trial 3, a phase III clinical end point device trial. Stroke. 2014;45(11):3187–93.

    Article  PubMed  Google Scholar 

  5. Huisa BN, et al. Transcranial laser therapy for acute ischemic stroke: a pooled analysis of NEST-1 and NEST-2. Int J Stroke. 2013;8(5):315–20.

    Article  PubMed  Google Scholar 

  6. Levine SR, Hill MD. NeuroThera Effectiveness and Safety Trial 3: how do we align corporate and scientific integrity to complete and report pharma-sponsored trials properly? Stroke. 2014;45(11):3175–7.

    Article  PubMed  Google Scholar 

  7. Vosler PS, et al. Mitochondrial targets for stroke: focusing basic science research toward development of clinically translatable therapeutics. Stroke. 2009;40(9):3149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron. 2016; 22(3).

  9. Wang X, et al. Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: a broadband near-infrared spectroscopy study. J Cereb Blood Flow Metab. 2017;37(12):3789–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu Y, et al. Low-level laser therapy for beta amyloid toxicity in rat hippocampus. Neurobiol Aging. 2017;49:165–82.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang QG, et al. Estrogen attenuates ischemic oxidative damage via an estrogen receptor alpha-mediated inhibition of NADPH oxidase activation. J Neurosci. 2009;29(44):13823–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang QG, et al. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury. PLoS One. 2012;7(4):e34504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang R, et al. Photobiomodulation for global cerebral ischemia: targeting mitochondrial dynamics and functions. Mol Neurobiol. 2019;56(3):1852–69.

    Article  CAS  PubMed  Google Scholar 

  14. Yang L, et al. Photobiomodulation therapy promotes neurogenesis by improving post-stroke local microenvironment and stimulating neuroprogenitor cells. Exp Neurol. 2018;299(Pt A):86–96.

    Article  CAS  PubMed  Google Scholar 

  15. Oron A, et al. Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke. 2006;37(10):2620–4.

    Article  PubMed  Google Scholar 

  16. Yang L, et al. Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. Transl Neurodegener. 2020;9(1):19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang CT, et al. Modulators of microglia activation and polarization in ischemic stroke (review). Mol Med Rep. 2020;21(5):2006–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gerace E, et al. NIR laser photobiomodulation induces neuroprotection in an in vitro model of cerebral hypoxia/ischemia. Mol Neurobiol. 2021;58(10):5383–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xing C, et al. Pathophysiologic cascades in ischemic stroke. Int J Stroke. 2012;7(5):378–85.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huang YY, et al. Low-level laser therapy (810 nm) protects primary cortical neurons against excitotoxicity in vitro. J Biophotonics. 2014;7(8):656–64.

    Article  CAS  PubMed  Google Scholar 

  21. Uozumi Y, et al. Targeted increase in cerebral blood flow by transcranial near-infrared laser irradiation. Lasers Surg Med. 2010;42(6):566–76.

    Article  PubMed  Google Scholar 

  22. Konstantinovic LM, et al. Transcranial application of near-infrared low-level laser can modulate cortical excitability. Lasers Surg Med. 2013;45(10):648–53.

    Article  PubMed  Google Scholar 

  23. Lima PLV, et al. Photobiomodulation enhancement of cell proliferation at 660nm does not require cytochrome c oxidase. J Photochem Photobiol B. 2019;194:71–5.

    Article  CAS  PubMed  Google Scholar 

  24. Jagdeo JR, et al. Transcranial red and near infrared light transmission in a cadaveric model. PLoS One. 2012;7(10):e47460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tedford CE, et al. Re: "Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue. Lasers in Surgery and Medicine, 2015;47(4):312–322. Lasers Surg Med, 2015;47(5): p. 466.

  26. Haeussinger FB, et al. Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging. PLoS One. 2011;6(10):e26377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Henderson TA, Morries LD. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat. 2015;11:2191–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pitzschke A, et al. Red and NIR light dosimetry in the human deep brain. Phys Med Biol. 2015;60(7):2921–37.

    Article  CAS  PubMed  Google Scholar 

  29. Pruitt T, et al. Transcranial photobiomodulation (tPBM) with 1,064-nm laser to improve cerebral metabolism of the human brain in vivo. Lasers Surg Med. 2020;52(9):807–13.

  30. Wang X, et al. Transcranial photobiomodulation and thermal stimulation induce distinct topographies of EEG alpha and beta power changes in healthy humans. Sci Rep. 2021;11(1):18917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Detaboada L, et al. Transcranial application of low-energy laser irradiation improves neurological deficits in rats following acute stroke. Lasers Surg Med. 2006;38(1):70–3.

    Article  PubMed  Google Scholar 

  32. Lapchak PA. Taking a light approach to treating acute ischemic stroke patients: transcranial near-infrared laser therapy translational science. Ann Med. 2010;42(8):576–86.

    Article  PubMed  Google Scholar 

  33. Barrett DW, Gonzalez-Lima F. Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience. 2013;230:13–23.

    Article  CAS  PubMed  Google Scholar 

  34. Gonzalez-Lima F, Barrett DW. Augmentation of cognitive brain functions with transcranial lasers. Front Syst Neurosci. 2014;8:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gonzalez-Lima F, Auchter A. Protection against neurodegeneration with low-dose methylene blue and near-infrared light. Front Cell Neurosci. 2015;9:179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Figueiro Longo MG, et al. Effect of transcranial low-level light therapy vs sham therapy among patients with moderate traumatic brain injury: a randomized clinical trial. JAMA Netw Open. 2020;3(9):e2017337.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wan S, et al. Transmittance of nonionizing radiation in human tissues. Photochem Photobiol. 1981;34(6):679–81.

    CAS  PubMed  Google Scholar 

  38. Lapchak PA, Wei J, Zivin JA. Transcranial infrared laser therapy improves clinical rating scores after embolic strokes in rabbits. Stroke. 2004;35(8):1985–8.

    Article  PubMed  Google Scholar 

  39. Dmochowski GM, et al. Near-infrared light increases functional connectivity with a non-thermal mechanism. Cereb Cortex Commun. 2020;1(1):tgaa004.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lapchak PA, et al. Neuroprotective effects of the spin trap agent disodium-[(tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (generic NXY-059) in a rabbit small clot embolic stroke model: combination studies with the thrombolytic tissue plasminogen activator. Stroke. 2002;33(5):1411–5.

    Article  CAS  PubMed  Google Scholar 

  41. Cui LL, et al. Cell therapy for ischemic stroke: are differences in preclinical and clinical study design responsible for the translational loss of efficacy? Ann Neurol. 2019;86(1):5–16.

    Article  PubMed  Google Scholar 

  42. Shazeeb MS, et al. Infarct evolution in a large animal model of middle cerebral artery occlusion. Transl Stroke Res. 2020;11(3):468–80.

    Article  PubMed  Google Scholar 

  43. Shazeeb MS, et al. Novel oxygen carrier slows infarct growth in large vessel occlusion dog model based on magnetic resonance imaging analysis. Stroke. 2022;53(4):1363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Choi DH, et al. Effect of 710-nm visible light irradiation on neuroprotection and immune function after stroke. NeuroImmunoModulation. 2012;19(5):267–76.

    Article  CAS  PubMed  Google Scholar 

  45. Cook DJ, Tymianski M. Nonhuman primate models of stroke for translational neuroprotection research. Neurotherapeutics. 2012;9(2):371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lapchak PA, et al. Safety profile of transcranial near-infrared laser therapy administered in combination with thrombolytic therapy to embolized rabbits. Stroke. 2008;39(11):3073–8.

    Article  CAS  PubMed  Google Scholar 

  47. Savitz SI, et al. Stroke Treatment Academic Industry Roundtable X: brain cytoprotection therapies in the reperfusion era. Stroke. 2019;50(4):1026–31.

    Article  PubMed  Google Scholar 

  48. Lyden P, et al. Top priorities for cerebroprotective studies-a paradigm shift: report from STAIR XI. Stroke. 2021;52(9):3063–71.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Husam Mikati for his generous assistance with this manuscript.

Funding

Dr. Liu would like to acknowledge grant fund RF1MH114285, “Transcranial Infrared Brain Stimulation: A Novel Tool for Noninvasive Neuromodulation.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuwei Feng.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W., Domeracki, A., Park, C. et al. Revisiting Transcranial Light Stimulation as a Stroke Therapeutic—Hurdles and Opportunities. Transl. Stroke Res. 14, 854–862 (2023). https://doi.org/10.1007/s12975-022-01103-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-01103-7

Keywords

Navigation