Skip to main content

Advertisement

Log in

The Mfn1-βIIPKC Interaction Regulates Mitochondrial Dysfunction via Sirt3 Following Experimental Subarachnoid Hemorrhage

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Neuronal injury following subarachnoid hemorrhage (SAH) has been shown to be associated with mitochondrial dysfunction and oxidative stress. βIIPKC, a subtype of protein kinase C (PKC), accumulates on the mitochondrial outer membrane and phosphorylates mitofusin 1 (Mfn1) at serine 86. Here, we investigated the role of Mfn1-βIIPKC interaction in brain damage and neurological function in both in vivo and in vitro experimental SAH models. The expression of βIIPKC protein and the interaction of Mfn1-βIIPKC were found to be increased after OxyHb treatment in primary cultured cortical neurons and were also observed in the brain following SAH in rats. Treatment with the βIIPKC inhibitor βIIV5-3 or SAMβA, a peptide that selectively antagonizes Mfn1-βIIPKC association, significantly attenuated the OxyHb-induced neuronal injury and apoptosis. These protective effects were accompanied by inhibited mitochondrial dysfunction and preserved mitochondrial biogenesis. The results of western blot showed that βIIV5-3 or SAMβA markedly increased the expression of Sirt3 and enhanced the activities of its downstream mitochondrial antioxidant enzymes in OxyHb-treated neurons. Knockdown of Sirt3 via specific targeted small interfering RNA (siRNA) partially prevented the βIIV5-3- or SAMβA-induced protection and antioxidative effects. In addition, treatment with βIIV5-3 or SAMβA in vivo was found to obviously reduce brain edema, alleviate neuroinflammation, and preserve neurological function after experimental SAH in rats. In congruent with in vitro data, the protection induced by βIIV5-3 or SAMβA was reduced by Sirt3 knockdown in vivo. In summary, our present results showed that blocking Mfn1-βIIPKC interaction protects against brain damage and mitochondrial dysfunction via Sirt3 following experimental SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Etminan N, Rinkel GJ. Unruptured intracranial aneurysms: development, rupture and preventive management. Nat Rev Neurol. 2016;12(12):699–713.

    Article  PubMed  Google Scholar 

  2. Khey KMW, Huard A, Mahmoud SH. Inflammatory pathways following subarachnoid hemorrhage. Cell Mol Neurobiol. 2020;40(5):675–93.

    Article  PubMed  Google Scholar 

  3. Coulibaly AP, Provencio JJ. Aneurysmal subarachnoid hemorrhage: an overview of inflammation-induced cellular changes. Neurotherapeutics. 2020;17(2):436–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Callender JA, Newton AC. Conventional protein kinase C in the brain: 40 years later. Neuronal Signal. 2017;1(2):NS20160005.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ono Y, et al. Expression and properties of two types of protein kinase C: alternative splicing from a single gene. Science. 1987;236(4805):1116–20.

    Article  CAS  PubMed  Google Scholar 

  6. Wakasaki H, et al. Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci USA. 1997;94(17):9320–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferreira JC, Brum PC, Mochly-Rosen D. betaIIPKC and epsilonPKC isozymes as potential pharmacological targets in cardiac hypertrophy and heart failure. J Mol Cell Cardiol. 2011;51(4):479–84.

    Article  CAS  PubMed  Google Scholar 

  8. Saito N, et al. Distribution of protein kinase C-like immunoreactive neurons in rat brain. J Neurosci. 1988;8(2):369–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mochly-Rosen D, Basbaum AI, Koshland DE Jr. Distinct cellular and regional localization of immunoreactive protein kinase C in rat brain. Proc Natl Acad Sci USA. 1987;84(13):4660–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Basu A, Pal D. Two faces of protein kinase Cdelta: the contrasting roles of PKCdelta in cell survival and cell death. ScientificWorldJournal. 2010;10:2272–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tejero-Diez P, et al. bFGF stimulates GAP-43 phosphorylation at ser41 and modifies its intracellular localization in cultured hippocampal neurons. Mol Cell Neurosci. 2000;16(6):766–80.

    Article  CAS  PubMed  Google Scholar 

  12. Correas I, Diaz-Nido J, Avila J. Microtubule-associated protein tau is phosphorylated by protein kinase C on its tubulin binding domain. J Biol Chem. 1992;267(22):15721–8.

    Article  CAS  PubMed  Google Scholar 

  13. Yuan Z, Agarwal-Mawal A, Paudel HK. 14-3-3 binds to and mediates phosphorylation of microtubule-associated tau protein by Ser9-phosphorylated glycogen synthase kinase 3beta in the brain. J Biol Chem. 2004;279(25):26105–14.

    Article  CAS  PubMed  Google Scholar 

  14. Boehm J, et al. Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron. 2006;51(2):213–25.

    Article  CAS  PubMed  Google Scholar 

  15. Ferreira JCB, et al. A selective inhibitor of mitofusin 1-betaIIPKC association improves heart failure outcome in rats. Nat Commun. 2019;10(1):329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen T, et al. Down-regulation of Homer1b/c attenuates glutamate-mediated excitotoxicity through endoplasmic reticulum and mitochondria pathways in rat cortical neurons. Free Radic Biol Med. 2012;52(1):208–17.

    Article  CAS  PubMed  Google Scholar 

  17. Lu Y, et al. Peroxiredoxin 2 activates microglia by interacting with Toll-like receptor 4 after subarachnoid hemorrhage. J Neuroinflammation. 2018;15(1):87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Laker RC, et al. A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo. J Biol Chem. 2014;289(17):12005–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferreira JC, et al. Protein quality control disruption by PKCbetaII in heart failure; rescue by the selective PKCbetaII inhibitor, betaIIV5–3. PLoS One. 2012;7(3):e33175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen Y, et al. Evaluation of the neuroprotective effect of EGCG: a potential mechanism of mitochondrial dysfunction and mitochondrial dynamics after subarachnoid hemorrhage. Food Funct. 2018;9(12):6349–59.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang T, et al. Docosahexaenoic acid alleviates oxidative stress-based apoptosis via improving mitochondrial dynamics in early brain injury after subarachnoid Hemorrhage. Cell Mol Neurobiol. 2018;38(7):1413–23.

    Article  CAS  PubMed  Google Scholar 

  22. Simpson PC. Beta-protein kinase C and hypertrophic signaling in human heart failure. Circulation. 1999;99(3):334–7.

    Article  CAS  PubMed  Google Scholar 

  23. Patterson C, et al. The bitter end: the ubiquitin-proteasome system and cardiac dysfunction. Circulation. 2007;115(11):1456–63.

    Article  CAS  PubMed  Google Scholar 

  24. Roth BL, et al. Immunohistochemical distribution of beta-protein kinase C in rat hippocampus determined with an antibody against a synthetic peptide sequence. Brain Res Bull. 1989;22(5):893–7.

    Article  CAS  PubMed  Google Scholar 

  25. Sheu FS, et al. Glial-derived S100b protein selectively inhibits recombinant beta protein kinase C (PKC) phosphorylation of neuron-specific protein F1/GAP43. Brain Res Mol Brain Res. 1994;21(1–2):62–6.

    Article  CAS  PubMed  Google Scholar 

  26. Perez-Pinzon MA, Dave KR, Raval AP. Role of reactive oxygen species and protein kinase C in ischemic tolerance in the brain. Antioxid Redox Signal. 2005;7(9–10):1150–7.

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka A, et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol. 2010;191(7):1367–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leboucher GP, et al. Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol Cell. 2012;47(4):547–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen L, et al. Molecular transporters for peptides: delivery of a cardioprotective epsilonPKC agonist peptide into cells and intact ischemic heart using a transport system, R(7). Chem Biol. 2001;8(12):1123–9.

    Article  CAS  PubMed  Google Scholar 

  30. Wang X, et al. The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Neurochem. 2009;109(Suppl 1):153–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Y, et al. Inhibition of mTOR alleviates early brain injury after subarachnoid hemorrhage via relieving excessive mitochondrial fission. Cell Mol Neurobiol. 2020;40(4):629–42.

    Article  CAS  PubMed  Google Scholar 

  32. Wu P, et al. Mdivi-1 alleviates early brain injury after experimental subarachnoid hemorrhage in rats, possibly via inhibition of Drp1-activated mitochondrial fission and oxidative stress. Neurochem Res. 2017;42(5):1449–58.

    Article  CAS  PubMed  Google Scholar 

  33. Thornton C, et al. Mitochondrial dynamics, mitophagy and biogenesis in neonatal hypoxic-ischaemic brain injury. FEBS Lett. 2018;592(5):812–30.

    Article  CAS  PubMed  Google Scholar 

  34. Chen H, et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160(2):189–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Simmons EC, Scholpa NE, Schnellmann RG. Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases. Exp Neurol. 2020;329:113309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cameron RB, Beeson CC, Schnellmann RG. Development of therapeutics that induce mitochondrial biogenesis for the treatment of acute and chronic degenerative diseases. J Med Chem. 2016;59(23):10411–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kang D, Hamasaki N. Mitochondrial transcription factor A in the maintenance of mitochondrial DNA: overview of its multiple roles. Ann N Y Acad Sci. 2005;1042:101–8.

    Article  CAS  PubMed  Google Scholar 

  38. Ruszkiewicz J, Albrecht J. Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders. Neurochem Int. 2015;88:66–72.

    Article  CAS  PubMed  Google Scholar 

  39. Anamika, et al. Mitochondrial SIRT3 and neurodegenerative brain disorders. J Chem Neuroanat. 2019;95:43–53.

    Article  CAS  PubMed  Google Scholar 

  40. Schlicker C, et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol. 2008;382(3):790–801.

    Article  CAS  PubMed  Google Scholar 

  41. Qiu X, et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010;12(6):662–7.

    Article  CAS  PubMed  Google Scholar 

  42. Dai SH, et al. Sirt3 confers protection against neuronal ischemia by inducing autophagy: Involvement of the AMPK-mTOR pathway. Free Radic Biol Med. 2017;108:345–53.

    Article  CAS  PubMed  Google Scholar 

  43. Dai SH, et al. Sirt3 attenuates hydrogen peroxide-induced oxidative stress through the preservation of mitochondrial function in HT22 cells. Int J Mol Med. 2014;34(4):1159–68.

    Article  CAS  PubMed  Google Scholar 

  44. Dai SH, et al. Sirt3 protects cortical neurons against oxidative stress via regulating mitochondrial Ca2+ and mitochondrial biogenesis. Int J Mol Sci. 2014;15(8):14591–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen T, et al. Sirt1-Sirt3 axis regulates human blood-brain barrier permeability in response to ischemia. Redox Biol. 2018;14:229–36.

    Article  CAS  PubMed  Google Scholar 

  46. Meng G, et al. Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner. Br J Pharmacol. 2018;175(8):1126–45.

    Article  CAS  PubMed  Google Scholar 

  47. Tyagi A, et al. SIRT3 deficiency-induced mitochondrial dysfunction and inflammasome formation in the brain. Sci Rep. 2018;8(1):17547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wu X, et al. SIRT3 protects against early brain injury following subarachnoid hemorrhage via promoting mitochondrial fusion in an AMPK dependent manner. Chin Neurosurg J. 2020;6:1.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Han H. RNA interference to knock down gene expression. Methods Mol Biol. 2018;1706:293–302.

    Article  CAS  PubMed  Google Scholar 

  50. Eschenbacher WH, et al. Two rare human mitofusin 2 mutations alter mitochondrial dynamics and induce retinal and cardiac pathology in Drosophila. PLoS One. 2012;7(9):e44296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kwon D, Park E, Kang SJ. Stimulator of IFN genes-mediated DNA-sensing pathway is suppressed by NLRP3 agonists and regulated by mitofusin 1 and TBC1D15, mitochondrial dynamics mediators. FASEB J. 2017;31(11):4866–78.

    Article  CAS  PubMed  Google Scholar 

  52. Ramirez S, et al. Mitochondrial dynamics mediated by mitofusin 1 is required for POMC neuron glucose-sensing and insulin release control. Cell Metab. 2017;25(6):1390-1399 e6.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81701932, No. 81871589, and No. 82072168), the Major Scientific Research Project of Wuxi Health Commission (No. Z202001), the Translational Medicine Research Major Project of Wuxi Health Commission (No. ZH201901), the Clinical Medical Science and Technology Development Foundation of Jiangsu University (No. JLY20180028), the China Postdoctoral Science Foundation funded project (No. 2019M651803), the Key Scientific Research Project of Jiangsu Health Commission (No. K2019018), and the Logistics Scientific Research Project of PLA (No. CLB20J027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Hai Wang or Chun-Hua Hang.

Ethics declarations

Ethical Approval

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Wang, Y., Wang, YH. et al. The Mfn1-βIIPKC Interaction Regulates Mitochondrial Dysfunction via Sirt3 Following Experimental Subarachnoid Hemorrhage. Transl. Stroke Res. 13, 845–857 (2022). https://doi.org/10.1007/s12975-022-00999-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-00999-5

Keywords

Navigation