Skip to main content

Advertisement

Log in

Letter to Wall Enhancement, Hemodynamics, and Morphology in Unruptured Intracranial Aneurysms with High Rupture Risk

  • Letter to the Editor
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lv N, Karmonik C, Chen S, Wang X, Fang Y, Huang Q, et al. Wall enhancement, hemodynamics, and morphology in unruptured intracranial aneurysms with high rupture risk. Transl Stroke Res. 2020;11(5):882–9. https://doi.org/10.1007/s12975-020-00782-4.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Meng H, Tutino V, Xiang J, Siddiqui A. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol. 2014;35(7):1254–62. https://doi.org/10.3174/ajnr.A3558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kono K, Fujimoto T, Shintani A, Terada T. Hemodynamic characteristics at the rupture site of cerebral aneurysms: a case study. Neurosurgery. 2012;71(6):E1202–9. https://doi.org/10.1227/NEU.0b013e31826f7ede.

    Article  PubMed  Google Scholar 

  4. Fukazawa K, Ishida F, Umeda Y, Miura Y, Shimosaka S, Matsushima S, et al. Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points. World Neurosurg. 2015;83(1):80–6. https://doi.org/10.1016/j.wneu.2013.02.012.

    Article  PubMed  Google Scholar 

  5. Suzuki T, Takao H, Suzuki T, Kambayashi Y, Watanabe M, Sakamoto H, et al. Determining the presence of thin-walled regions at high-pressure areas in unruptured cerebral aneurysms by using computational fluid dynamics. Neurosurgery. 2016;79(4):589–95. https://doi.org/10.1227/NEU.0000000000001232.

    Article  PubMed  Google Scholar 

  6. Samaniego EA, Roa JA, Zhang H, Koscik TR, Ortega-Gutierrez S, Bathla G, et al. Increased contrast enhancement of the parent vessel of unruptured intracranial aneurysms in 7T MR imaging. J Neurointerv Surg. 2020;12(10):1018–22. https://doi.org/10.1136/neurintsurg-2020-015915.

    Article  PubMed  Google Scholar 

  7. Cornelissen BMW, Leemans EL, Coolen BF, Peper ES, van den Berg R, Marquering HA, et al. Insufficient slow-flow suppression mimicking aneurysm wall enhancement in magnetic resonance vessel wall imaging: a phantom study. Neurosurg Focus. 2019;47(1):E19. https://doi.org/10.3171/2019.4.FOCUS19235.

    Article  PubMed  Google Scholar 

  8. Tsuji M, Ishikawa T, Ishida F, Furukawa K, Miura Y, Shiba M, et al. Stagnation and complex flow in ruptured cerebral aneurysms: a possible association with hemostatic pattern. J Neurosurg. 2017;126(5):1566–72. https://doi.org/10.3171/2016.3.JNS152264.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Suzuki.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuji, M., Ishida, F. & Suzuki, H. Letter to Wall Enhancement, Hemodynamics, and Morphology in Unruptured Intracranial Aneurysms with High Rupture Risk. Transl. Stroke Res. 13, 507–508 (2022). https://doi.org/10.1007/s12975-021-00982-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-021-00982-6

Navigation