Skip to main content

Advertisement

Log in

Plasma Kallikrein Contributes to Intracerebral Hemorrhage and Hypertension in Stroke-Prone Spontaneously Hypertensive Rats

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Plasma kallikrein (PKa) has been implicated in contributing to hemorrhage following thrombolytic therapy; however, its role in spontaneous intracerebral hemorrhage is currently not available. This report investigates the role of PKa on hemorrhage and hypertension in stroke-prone spontaneously hypertensive rats (SHRSP). SHRSP were fed with a high salt–containing stroke-prone diet to increase blood pressure and induce intracerebral hemorrhage. The roles of PKa on blood pressure, hemorrhage, and survival in SHRSP were examined in rats receiving a PKa inhibitor or plasma prekallikrein antisense oligonucleotide (PK ASO) compared with rats receiving control ASO. Effects on PKa on the proteolytic cleavage of atrial natriuretic peptide (ANP) were analyzed by tandem mass spectrometry. We show that SHRSP on high-salt diet displayed increased levels of PKa activity compared with control rats. Cleaved kininogen was increased in plasma during stroke compared to SHRSP without stroke. Systemic administration of a PKa inhibitor or PK ASO to SHRSP reduced hemorrhage and blood pressure, and improved neurological function and survival compared with SHRSP receiving control ASO. Since PKa inhibition was associated with reduced blood pressure in hypertensive rats, we investigated the effects of PKa on the cleavage of ANP. Incubation of PKa with ANP resulted in the generation fragment ANP5-28, which displayed reduced effects on blood pressure lowering compared with full length ANP. PKa contributes to increased blood pressure in SHRSP, which is associated with hemorrhage and reduced survival. PKa-mediated cleavage of ANP reduces its blood pressure lowering effects and thereby may contribute to hypertension-induced intracerebral hemorrhage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Brott T, Thalinger K, Hertzberg V. Hypertension as a risk factor for spontaneous intracerebral hemorrhage. Stroke. 1986;17:1078–83.

    Article  CAS  PubMed  Google Scholar 

  2. Kazui SMK, Sawada T, Yamaguchi T. Predisposing factors to enlargement of spontaneous intracerebral hemorrhage. Stroke. 1997;28:2370–5.

    Article  CAS  PubMed  Google Scholar 

  3. Qureshi AI, Mendelow AD, Hanley DF. Prevalence of elevated blood pressure in 563,704 adult patients with stroke presenting to the ED in the United States. Am J Emerg Med. 2007;25:32–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Carlberg B, Asplund K, Hagg E. Factors influencing admission blood pressure levels in patients with acute stroke. Stroke. 1991;22:527–30.

    Article  CAS  PubMed  Google Scholar 

  5. Sato S, Carcel C, Anderson CS. Blood pressure management after intracerebral hemorrhage. Curr Treat Options Neurol. 2015;17:49.

    Article  PubMed  Google Scholar 

  6. Willmot N, Leonardi-Bee J, Bath PMW. High blood pressure in acute stroke and subsequent outcome: a systematic review. Hypertension. 2004;43:18–24.

    Article  CAS  PubMed  Google Scholar 

  7. Lawes CMM, Bennett DA, Feigin VL, Rodgers A. Blood pressure and stroke. Stroke. 2004;35:776–85.

    Article  PubMed  Google Scholar 

  8. Schmaier AH, McCrae KR. The plasma kallikrein-kinin system: its evolution from contact activation. J Thromb Haemost. 2007;5:2323–9.

    Article  CAS  PubMed  Google Scholar 

  9. Liu J, Gao BB, Clermont AC, Blair P, Chilcote TJ, Sinha S, et al. Hyperglycemia-induced cerebral hematoma expansion is mediated by plasma kallikrein. Nat med. 2011;17:206–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Simao F, Feener EP. The effects of the contact activation system on hemorrhage. Front Med. 2017;4:121.

    Article  Google Scholar 

  11. Liu J, Clermont AC, Gao BB, Feener EP. Intraocular hemorrhage causes retinal vascular dysfunction via plasma kallikrein. Invest Ophthalmol Vis Sci. 2013;54:1086–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Simao F, Ustunkaya T, Clermont AC, Feener EP. Plasma kallikrein mediates brain hemorrhage and edema caused by tissue plasminogen activator therapy in mice after stroke. Blood. 2017;129:2280–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Revenko AS, Gao D, Crosby JR, Bhattachariee G, Zhao C, May C, et al. Selective depletion of plasma prekallikrein or coagulation factor XII inhibits thrombosis in mice without increased risk of bleeding. Blood. 2011;118:5302–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Phipps JA, Clermont AC, Sinha S, Chilcote TJ, Bursell SE, Feener EP. Plasma kallikrein mediates angiotensin II type 1 receptor-stimulated retinal vascular permeability. Hypertension. 2009;53:175–81.

    Article  CAS  PubMed  Google Scholar 

  15. Jaffa AA, Durazo-Arvizu R, Zheng D, Lackland DT, Srikanth S, Garvey WT, et al. Plasma prekallikrein: a risk marker for hypertension and nephropathy in type 1 diabetes. Diabetes. 2003;52:1215–21.

    Article  CAS  PubMed  Google Scholar 

  16. Ferrone JD, Bhattacharjee G, Revenko AS, Zanardi TA, Warren MS, Derosier FJ, et al. IONIS-PKKKRx a novel antisense inhibitor of prekallikrein and bradykinin production. Nucleic Acid Ther. 2019;29:82–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang F, Guo RM, Yang M, Wen XH, Shen J. A stable focal cerebral ischemia injury model in adult mice: assessment using 7T MR imaging. AJNR Am J Neuroradiol. 2012;33:935–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao BB, Chen X, Timothy N, Aiello LP, Feener EP. Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathy. J Proteome Res. 2008;7:2516–25.

    Article  CAS  PubMed  Google Scholar 

  19. Mori N, Nakao K, Kihara M, Sugawara A, Sakamoto M, Yamori Y, et al. Decreased content in left atrium and increased plasma concentration of atrial natriuretic polypeptide in spontaneously hypertensive rats (SHR) and SHR stroke-prone. Biochem Biophys Res Commun. 1986;135:74–81.

    Article  Google Scholar 

  20. De Bold AJ. Atrial natriuretic factor: a hormone produced by heart. Science. 1985;230:767–70.

    Article  PubMed  Google Scholar 

  21. Oparil S. The elusive role of atrial natriuretic peptide in hypertension. Mayo Clin Proc. 1995;70:1015–7.

    Article  CAS  PubMed  Google Scholar 

  22. Romero M, Caniffi C, Bouchet G, Costa MA, Elesgaray R, Arranz C, et al. Chronic treatment with atrial natriuretic peptide in spontaneously hypertensive rats: beneficial renal effects and sex differences. PLoS One. 2015;10:e0120362.

  23. Thibault G, Garcia R, Cantin M, Genest J. Atrial natriuretic factor and urinary kallikrein in the rat: antagonistic factors? Can J Physiol Pharmacol. 1984;62:645–9.

    Article  CAS  PubMed  Google Scholar 

  24. Briggs J, Marin-Grez M, Steipe B, Schubert G, Schnermann J. Inactivation of atrial natriuretic substance by kallikrein. Arm J Physiol. 1984;247:F480-484.

    CAS  Google Scholar 

  25. Li B, Tom JY, Oare D, Yen R, Fairbrother WJ, Wells JA, et al. Minimization of a polypeptide hormone. Science. 1995;270:1657–9.

    Article  CAS  PubMed  Google Scholar 

  26. Zeng J, Zhang Y, Mo J, Su Z, Huang R. Two-kidney, two clip renovascular hypertensive rats can be used as stroke-prone rats. Stroke. 1998;29:1709–14.

    Article  Google Scholar 

  27. Arribas SM, Costa R, Salomone S, Morel N, Godfraind T, McGrath JC. Functional reduction and associated cellular rearrangement in SHRSP rat basilar arteries are affected by salt load and calcium antagonist treatment. J Cereb Blood Flow Metab. 1999;19:517–27.

    Article  CAS  PubMed  Google Scholar 

  28. Arribas SM, Gordon JF, Daly CJ, Dominiczak AF, McGrath JC. Confocal microscopic characterization of a lesion in a cerebral vessel of the stroke-prone spontaneously hypertensive rat. Stroke. 1996;27:1118–23.

    Article  CAS  PubMed  Google Scholar 

  29. Lee JM, Zhai G, Liu Q, Gonzales ER, Yin K, Yan P, et al. Vascular permeability precedes spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats. Stroke. 2007;38:3289–91.

    Article  PubMed  Google Scholar 

  30. Smeda JS, Daneshtalab N. The effects of poststroke captopril and losartan treatment on cerebral blood flow autoregulation in SHRSP with hemorrhagic stroke. J Cereb Blood Flow Metab. 2011;31:476–85.

    Article  CAS  PubMed  Google Scholar 

  31. Smeda JS. Hemorrhagic stroke development in spontaneously hypertensive rats fed a North American. Japanese-style diet Stroke. 1989;20:1212–8.

    CAS  PubMed  Google Scholar 

  32. Del Bigio MR, Yan HJ, Kozlowski P, Sutherland GR, Peeling J. Serial magnetic resonance imaging of rat brain after induction of renal hypertension. Stroke. 1999;30:2440–7.

    Article  PubMed  Google Scholar 

  33. Okamoto K, Ohta Y, Chikugo T, Shiokawa H, Morita N. Chronic treatment with captopril, SQ 29,852, hydralazine and a 33% fish meal diet in malignant stroke-prone spontaneously hypertensive rats. J Hypertens. 1991;9:1105–7.

    CAS  PubMed  Google Scholar 

  34. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665.

  35. Horning B, Kohler C, Drexler H. Role of bradykinin in mediating vascular effects of angiotensin-converting enzyme inhibitors in humans. Circulation. 1997;95:1115–8.

    Article  Google Scholar 

  36. Campbell DJ, Krum H, Esler MD. Losartan increases bradykinin levels in hypertensive humans. Circulation. 2005;111:315–20.

    Article  CAS  PubMed  Google Scholar 

  37. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sica D, Ferdinand K, Giles TD, Falkner B, Carey RM. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008;117:e510–26.

    Article  PubMed  Google Scholar 

  38. Mohr JP, Marti-Vilalta JL. Lacunes. In: Barnett HJM, Mohr JP, Stein BM, Yatsu FM, editors. Stroke: pathophysiology, diagnosis, and management. 3rd ed. New York, NY: Churchill Livingstone; 1998. p. 599–622.

    Google Scholar 

  39. Schreiber S, Bueche CZ, Garz C, Braun H. Blood brain barrier breakdown as the starting point of cerebral small vessel disease? – New insights from a rat model. Exp Transl Stroke Med. 2013;5:4.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gob E, Reymann S, Langhauser F, Schuhmann MK, Kraft P, Thielmann I, et al. Blocking of plasma kallikrein ameliorates stroke by reducing thromboinflammation. Ann Neurol. 2015;77:784–803.

    Article  PubMed  Google Scholar 

  41. Liu J, Gao BB, Feener EP. Proteomic identification of novel plasma kallikrein substrates in the astrocyte secretome. Transl Stroke Res. 2010;1:276–86.

    Article  PubMed  Google Scholar 

  42. Bailey EL, Wardlaw JM, Graham D, Dominiczak AF, Sudlow CL, Smith C. Cerebral small vessel endothelial structural changes predate hypertension in stroke-prone spontaneously hypertensive rats: a blinded, controlled immunohistochemical study of 5- to 21-week-old rats. Neuropathol Appl Neurobiol. 2011;37:711–26.

    Article  CAS  PubMed  Google Scholar 

  43. Lee JM, Zhai G, Liu Q, et al. Vascular permeability precedes spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats. Stroke. 2007;38:3289–91.

    Article  PubMed  Google Scholar 

  44. Quick S, Moss J, Rajani RM, Williams A. A vessel for change: endothelial dysfunction in cerebral small vessel disease. Trends Neusoci. 2021;44:289–305.

    Article  CAS  Google Scholar 

  45. Rajani RM, Quick S, Ruigrok SR, Graham D, Harris SE, Verhaaren BFJ, Fornage M, Seshadri S, Atanur SS, Dominiczak AF, Smith C, Wardlaw JM, Williams A. Reversal of endothelial dysfunction reduces white matter vulnerability in cerebral small vessel disease in rats. Sci Transl Med. 2018;10:eaam9507.

  46. Tagami M, Kubota A, Sunaga T, et al. Increased transendothelial channel transport of cerebral capillary endothelium in stroke-prone SHR. Stroke. 1993;14:591–6.

    Article  Google Scholar 

  47. Fredriksson K, Kalimo H, Westergren I, et al. Blood-brain barrier leakage and brain edema in stroke-prone spontaneously hypertensive rats: effect of chronic sympathectomy and low protein/high salt diet. Acta Neuropathol (Berl). 1987;74:259–68.

    Article  CAS  Google Scholar 

  48. Tomimoto H, Akiguchi I, Sunaga T, et al. Alterations of the blood-brain barrier and glial cells in white-matter lesions in cerebrovascular and Alzheimer’s disease patients. Stroke. 1996;27:2096–2074.

    Article  Google Scholar 

  49. Da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, Lima FR. The impact of microglia activation on blood-brain barrier in brain diseases. Front Cell Neurosci. 2014;8:362.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Takeuchi S, Nagatani K, Otani N, Nawashiro H, Sugawara T, Wada K, Mori K. Hydrogen improves neurological function through attenuation of blood-brain barrier disruption in spontaneously hypertensive stroke-prone rats. BMC Neurosci. 2015;16:22.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yamamoto E, Tamamaki N, Nakamura T, Kataoka K, Tokutomi Y, Dong YF, Fukuda M, Matsuba S, Ogawa H, Kim-Mitsuyama S. Excess salt causes cerebral neuronal apoptosis and inflammation in stroke-prone hypertensive rats through angiotensin II-induced NADPH oxidase activation. Stroke. 2008;39:3049–56.

    Article  CAS  PubMed  Google Scholar 

  52. Marks L, Carswell HV, Peters EE, Graham DI, Patterson J, Dominiczak AF, Macrae IM. Characterization of the microglial response to cerebral ischemia in the stroke-prone spontaneously hypertensive rat. Hypertension. 2001;38:116–22.

    Article  CAS  PubMed  Google Scholar 

  53. Kato J, Kida O, Nakamura S, Sasaki A, Kodoma K, Tanaka K. Atrial natriuretic polypeptide (ANP) in the development of spontaneously hypertensive rats (SHR) and stroke-prone SHR (SHRSP). Biochem Biophys Res Commun. 1987;143:316–22.

    Article  CAS  PubMed  Google Scholar 

  54. John SWM, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, et al. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science. 1995;267:679–81.

    Article  CAS  PubMed  Google Scholar 

  55. Steinhelper ME, Cochrane KL, Field LJ. Hypotension in transgenic mice expressing atrial natriuretic factor fusion genes. Hypertension. 1990;16:301–7.

    Article  CAS  PubMed  Google Scholar 

  56. Klinger JR, Petit RD, Curtin LA, Warburton RR, Wrenn DS, Steinhelper ME, et al. Cardiopulmonary responses to chronic hypoxia in transgenic mice that overexpress ANP. J Appl Physiol. 1993;75:198–205.

    Article  CAS  PubMed  Google Scholar 

  57. Janssen WNT, de Zeuw D, van der Hem GK, de Jong PE. Antihypertensive effect of a 5-day infusion of atrial natriuretic factor in humans. Hypertension. 1989;13:640–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Institute of Health Grant NS107798 (F. S.), NS077006 (E. P. F.), and DK036836 (Joslin’s DRC grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrício Simão.

Ethics declarations

Ethical Approval

Experiments were performed in accordance with the guidelines of National Institute of Health Guide for the Care and Use of Laboratory Animals and were approved by the Animal Care and Use Committee of the Joslin Diabetes Center. This article does not contain any studies with human participants performed by any of the authors.

Conflict of Interest

J. G., L. D. P., T. U., and F. S. declare no competing financial interests. A. S. R. and A. R. M. are employees of Ionis Pharmaceuticals Inc., Carlsbad, CA. A. C. C. and E. P. F. are employees of KalVista Pharmaceuticals Inc., Cambridge, MA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, J., Clermont, A.C., Pham, LD. et al. Plasma Kallikrein Contributes to Intracerebral Hemorrhage and Hypertension in Stroke-Prone Spontaneously Hypertensive Rats. Transl. Stroke Res. 13, 287–299 (2022). https://doi.org/10.1007/s12975-021-00929-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-021-00929-x

Keywords

Navigation