Skip to main content

Advertisement

Log in

Protective Effects of ShcA Protein Silencing for Photothrombotic Cerebral Infarction

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) exacerbate stroke-induced cell damage. We found that ShcA, a protein that regulates ROS, is highly expressed in a Rose Bengal photothrombosis model. We investigated whether ShcA is essential for mitophagy in ROS-induced cellular damage and determined whether ROS exacerbate mitochondrial dysfunction via ShcA protein expression. Ischemic stroke was generated by Rose Bengal photothrombosis in mice. To silence ShcA protein expression in the mouse brain, ShcA-targeting siRNA-encapsulated nanoparticles were intrathecally injected into the cisterna magna. Upon staining with antibodies against ShcA counterpart caspase-3 or NeuN, we found that the ShcA protein expression was increased in apoptotic neurons. In addition, mitochondrial dysfunction and excessive mitophagy were evident in photothrombotic stroke tissue. Infarct volumes were significantly reduced, and neurological deficits were diminished in the ShcA siRNA nanoparticle-treated group, compared with the negative control siRNA nanoparticle-treated group. We confirmed that the reduction of ShcA expression by nanoparticle treatment rescued the expression of genes, associated with mitochondrial dynamics and mitophagy mediation in a stroke model. This study suggests that the regulation of ShcA protein expression can be a therapeutic target for reducing brain damage with mitochondrial dysfunction caused by thrombotic infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Poli G, Leonarduzzi G, Biasi F, Chiarpotto E. Oxidative stress and cell signalling. Curr Med Chem. 2004;11(9):1163–82.

    Article  CAS  PubMed  Google Scholar 

  2. Chen K, Thomas SR, Keaney JF Jr. Beyond LDL oxidation: ROS in vascular signal transduction. Free Radic Biol Med. 2003;35(2):117–32.

    Article  CAS  PubMed  Google Scholar 

  3. Liu H, Colavitti R, Rovira II, Finkel T. Redox-dependent transcriptional regulation. Circ Res. 2005;97(10):967–74.

    Article  CAS  PubMed  Google Scholar 

  4. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Phys Lung Cell Mol Phys. 2000;279(6):L1005–28.

    CAS  Google Scholar 

  5. Briones AM, Touyz RM. Oxidative stress and hypertension: current concepts. Curr Hypertens Rep. 2010;12(2):135–42.

    Article  CAS  PubMed  Google Scholar 

  6. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87(10):840–4.

    Article  CAS  PubMed  Google Scholar 

  7. Lyle AN, Griendling KK. Modulation of vascular smooth muscle signaling by reactive oxygen species. Physiology (Bethesda). 2006;21:269–80.

    CAS  Google Scholar 

  8. Crack PJ, Taylor JM. Reactive oxygen species and the modulation of stroke. Free Radic Biol Med. 2005;38(11):1433–44.

    Article  CAS  PubMed  Google Scholar 

  9. Gursoy-Ozdemir Y, Can A, Dalkara T. Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia. Stroke. 2004;35(6):1449–53.

    Article  PubMed  CAS  Google Scholar 

  10. Nelson CW, Wei EP, Povlishock JT, Kontos HA, Moskowitz MA. Oxygen radicals in cerebral ischemia. Am J Phys. 1992;263(5 Pt 2):H1356–62.

    CAS  Google Scholar 

  11. Fagiani E, Giardina G, Luzi L, Cesaroni M, Quarto M, Capra M, et al. RaLP, a new member of the Src homology and collagen family, regulates cell migration and tumor growth of metastatic melanomas. Cancer Res. 2007;67(7):3064–73.

    Article  CAS  PubMed  Google Scholar 

  12. Okada S, Kao AW, Ceresa BP, Blaikie P, Margolis B, Pessin JE. The 66-kDa Shc isoform is a negative regulator of the epidermal growth factor-stimulated mitogen-activated protein kinase pathway. J Biol Chem. 1997;272(44):28042–28,049.

    Article  CAS  PubMed  Google Scholar 

  13. Pelicci G, Lanfrancone L, Grignani F, McGlade J, Cavallo F, Forni G, et al. A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell. 1992;70(1):93–104.

    Article  CAS  PubMed  Google Scholar 

  14. Jones N, Hardy WR, Friese MB, Jorgensen C, Smith MJ, Woody NM, et al. Analysis of a Shc family adaptor protein, ShcD/Shc4, that associates with muscle-specific kinase. Mol Cell Biol. 2007;27(13):4759–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakamura T, Muraoka S, Sanokawa R, Mori N. N-Shc and Sck, two neuronally expressed Shc adapter homologs. Their differential regional expression in the brain and roles in neurotrophin and Src signaling. J Biol Chem. 1998;273(12):6960–7.

    Article  CAS  PubMed  Google Scholar 

  16. Conti L, Sipione S, Magrassi L, Bonfanti L, Rigamonti D, Pettirossi V, et al. Shc signaling in differentiating neural progenitor cells. Nat Neurosci. 2001;4(6):579–86.

    Article  CAS  PubMed  Google Scholar 

  17. Cataudella T, Conti L, Cattaneo E. Neural stem and progenitor cells: choosing the right Shc. Prog Brain Res. 2004;146:127–33.

    Article  CAS  PubMed  Google Scholar 

  18. Wary KK, Mainiero F, Isakoff SJ, Marcantonio EE, Giancotti FG. The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell. 1996;87(4):733–43.

    Article  CAS  PubMed  Google Scholar 

  19. Stevenson LE, Ravichandran KS, Frackelton AR Jr. Shc dominant negative disrupts cell cycle progression in both G0-G1 and G2-M of ErbB2-positive breast cancer cells. Cell Growth Differ. 1999;10(1):61–71.

    CAS  PubMed  Google Scholar 

  20. Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature. 1999;402(6759):309–13.

    Article  CAS  PubMed  Google Scholar 

  21. Talley Watts L, Zheng W, Garling RJ, Frohlich VC, Lechleiter JD. Rose Bengal photothrombosis by confocal optical imaging in vivo: a model of single vessel stroke. J Vis Exp. 2015;100:e52794.

    Google Scholar 

  22. Yang G, Chan PH, Chen J, Carlson E, Chen SF, Weinstein P, et al. Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke. 1994;25(1):165–70.

    Article  PubMed  Google Scholar 

  23. Shibata M, Yamasaki N, Miyakawa T, Kalaria RN, Fujita Y, Ohtani R, et al. Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion. Stroke. 2007;38(10):2826–32.

    Article  PubMed  Google Scholar 

  24. Noh MY, Koh SH, Kim SM, Maurice T, Ku SK, Kim SH. Neuroprotective effects of donepezil against Aβ42-induced neuronal toxicity are mediated through not only enhancing PP2A activity but also regulating GSK-3β and nAChRs activity. J Neurochem. 2013;127:562–74.

    Article  CAS  PubMed  Google Scholar 

  25. Shin J, Yin Y, Park H, Park S, Triantafillu UL, Kim Y, et al. p38 siRNA-encapsulated PLGA nanoparticles alleviate neuropathic pain behavior in rats by inhibiting microglia activation. Nanomedicine (London). 2018;13(13):1607–21.

    Article  CAS  Google Scholar 

  26. Carmichael ST. Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx. 2005;2(3):396–409.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Reers M, Smith TW, Chen LB. J-Aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry. 1991;30(18):4480–6.

    Article  CAS  PubMed  Google Scholar 

  28. Di Lisa F, Blank PS, Colonna R, Gambassi G, Silverman HS, Stern MD, et al. Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. J Physiol. 1995;486(Pt 1):1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Menon JU, Kuriakose A, Iyer R, Hernandez E, Gandee L, Zhang S, et al. Dual-drug containing core-shell nanoparticles for lung cancer therapy. Sci Rep. 2017;7(1):13249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol. 1985;17(5):497–504.

    Article  CAS  PubMed  Google Scholar 

  31. Zheng W, Watts LT, Holstein DM, Prajapati SI, Keller C, Grass EH, et al. Purinergic receptor stimulation reduces cytotoxic edema and brain infarcts in mouse induced by photothrombosis by energizing glial mitochondria. PLoS One. 2010;5(12):e14401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng W, Talley Watts L, Holstein DM, Wewer J, Lechleiter JD. P2Y1R-Initiated, IP3R-dependent stimulation of astrocyte mitochondrial metabolism reduces and partially reverses ischemic neuronal damage in mouse. J Cereb Blood Flow Metab. 2013;33(4):600–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Witte OW, Stoll G. Delayed and remote effects of focal cortical infarctions: secondary damage and reactive plasticity. Adv Neurol. 1997;73:207–27.

    CAS  PubMed  Google Scholar 

  34. Hagemann G, Redecker C, Neumann-Haefelin T, Freund HJ, Witte OW. Increased long-term potentiation in the surround of experimentally induced focal cortical infarction. Ann Neurol. 1998;44(2):255–8.

    Article  CAS  PubMed  Google Scholar 

  35. Labat-gest V, Tomasi S. Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. J Vis Exp. 2013;9(76):50370.

    Google Scholar 

  36. Kleinschnitz C, et al. Blocking of platelets or intrinsic coagulation pathway-driven thrombosis does not prevent cerebral infarctions induced by photothrombosks. Stroke. 2008;39:1262–8.

    Article  PubMed  Google Scholar 

  37. Uzdensky AB. Photothrombotic stroke as a model of ischemic stroke. Transl Stroke Res. 2018;9(5):437–51.

    Article  PubMed  Google Scholar 

  38. Sato K, Kimoto M, Kakumoto M, Horiuchi D, Iwasaki T, Tokmakov AA, et al. Adaptor protein Shc undergoes translocation and mediates upregulation of the tyrosine kinase c-Src in EGF-stimulated A431 cells. Genes Cells. 2000;5(9):749–64.

    Article  CAS  PubMed  Google Scholar 

  39. Ventura A, Maccarana M, Raker VA, Pelicci PG. A cryptic targeting signal induces isoform-specific localization of p46Shc to mitochondria. J Biol Chem. 2004;279(3):2299–306.

    Article  CAS  PubMed  Google Scholar 

  40. Nemoto S, Combs CA, French S, Ahn BH, Fergusson MM, Balaban RS, et al. The mammalian longevity-associated gene product p66shc regulates mitochondrial metabolism. J Biol Chem. 2006;281(15):10555–10,560.

    Article  CAS  PubMed  Google Scholar 

  41. Lang JY, Ma K, Guo JX, Sun H. Oxidative stress induces B lymphocyte DNA damage and apoptosis by upregulating p66shc. Eur Rev Med Pharmacol Sci. 2018;22(4):1051–60.

    PubMed  Google Scholar 

  42. Xie ZZ, Shi MM, Xie L, Wu ZY, Li G, Hua F, et al. Sulfhydration of p66Shc at cysteine 59 mediates the antioxidant effect of hydrogen sulfide. Antioxid Redox Signal. 2014;21(18):2531–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Piao S, Nagar H, Kim S, Lee I, Choi SJ, Kim T, et al. CRIF1 deficiency induced mitophagy via p66shc-regulated ROS in endothelial cells. Biochem Biophys Res Commun. 2020;522(4):869–875

  44. Yoo SM, Jung YK. A molecular approach to mitophagy and mitochondrial dynamics. Mol Cell. 2018;41(1):18–26.

    CAS  Google Scholar 

Download references

Funding

This research was supported by the Ministry of Science, ICT & Future Planning (NRF-2019R1C1C1005585, NRF-2018R1D1A1B07045664), and the Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2019R1A2C2004884).

Author information

Authors and Affiliations

Authors

Contributions

JH participated in the design of the study, carried out pain behavior testing and immunostaining studies, participated in data analysis, and drafted the manuscript. NS and HJS carried out real-time PCR. YY and HHK participated in the RB model and behavior tests. HP and SK participated in in vitro experiments. DWK and HS participated in the design of the study and data analysis and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Dong Woon Kim or Hee-Jung Song.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All protocols were performed in accordance with the Chungnam National University hospital Guide for the Care and Use of Laboratory Animals and were approved by the University of Chungnam Institutional Animal Care and Use Committee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PPTX 865 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, JA., Shin, N., Shin, H.J. et al. Protective Effects of ShcA Protein Silencing for Photothrombotic Cerebral Infarction. Transl. Stroke Res. 12, 866–878 (2021). https://doi.org/10.1007/s12975-020-00874-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-020-00874-1

Keywords

Navigation