Skip to main content

Advertisement

Log in

Wogonin Accelerates Hematoma Clearance and Improves Neurological Outcome via the PPAR-γ Pathway After Intracerebral Hemorrhage

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Intracerebral hemorrhage (ICH) is a cerebrovascular disease with high mortality and morbidity for which effective treatments are currently lacking. Wogonin is a major flavonoid compound isolated from Scutellaria radix. Accumulating evidence suggests that wogonin plays a crucial role in anti-inflammatory and anti-oxidative stress. Treatment of microglia with nuclear receptor agonists augments the expression of phagocytosis-related genes. However, the neuroprotective effects of wogonin in ICH remain obscure. In this study, we elucidated an innovative mechanism by which wogonin acts to enhance phagocytosis in a murine model of ICH. Wogonin promoted hematoma clearance and improved neurological recovery after ICH by upregulating the expression of Axl, MerTK, CD36, and LAMP2 in perihematomal microglia and BV2 cells. Treatment of a murine model of ICH with wogonin stimulated microglial phagocytosis in vitro. Further, we demonstrated that wogonin dramatically attenuated inflammatory and oxidative stress responses in a murine model of ICH by reducing the expression of pro-inflammatory cytokines and pro-oxidant enzymes such as TNF-α, IL-1β, and inducible nitric oxide synthase (iNOS) after ICH. The effects of wogonin were abolished by administration of the PPAR-γ inhibitor GW9662. In conclusion, our data suggest that wogonin facilitates hematoma clearance and neurobehavioral recovery by targeting PPAR-γ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All raw data used in this manuscript are available on reasonable request.

Abbreviations

iNOS:

Inducible nitric oxide synthase

ICH:

Intracerebral hemorrhage

CNS:

Central nervous system

PPAR-γ:

Peroxisome proliferator-activated receptor-γ

TAM:

Tyro3, Axl and MerTK

LAMP2:

Lysosomal associated membrane protein 2

ROS:

Reactive oxygen species

References

  1. Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373(9675):1632–44. https://doi.org/10.1016/S0140-6736(09)60371-8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chang CF, Wan J, Li Q, Renfroe SC, Heller NM, Wang J. Alternative activation-skewed microglia/macrophages promote hematoma resolution in experimental intracerebral hemorrhage. Neurobiol Dis. 2017;103:54–69. https://doi.org/10.1016/j.nbd.2017.03.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dang G, Yang Y, Wu G, Hua Y, Keep RF, Xi G. Early Erythrolysis in the hematoma after experimental Intracerebral hemorrhage. Transl Stroke Res. 2017;8(2):174–82. https://doi.org/10.1007/s12975-016-0505-3.

    Article  CAS  PubMed  Google Scholar 

  4. Hong S, Stevens B. Microglia: phagocytosing to clear, sculpt, and eliminate. Dev Cell. 2016;38(2):126–8. https://doi.org/10.1016/j.devcel.2016.07.006.

    Article  CAS  PubMed  Google Scholar 

  5. Egashira Y, Hua Y, Keep RF, Xi G. Intercellular cross-talk in intracerebral hemorrhage. Brain Res. 2015;1623:97–109. https://doi.org/10.1016/j.brainres.2015.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao X, Sun G, Zhang J, Strong R, Song W, Gonzales N, et al. Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor gamma in microglia/macrophages. Ann Neurol. 2007;61(4):352–62. https://doi.org/10.1002/ana.21097.

    Article  CAS  PubMed  Google Scholar 

  7. Collino M, Aragno M, Mastrocola R, Gallicchio M, Rosa AC, Dianzani C, et al. Modulation of the oxidative stress and inflammatory response by PPAR-gamma agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion. Eur J Pharmacol. 2006;530(1–2):70–80. https://doi.org/10.1016/j.ejphar.2005.11.049.

    Article  CAS  PubMed  Google Scholar 

  8. Zolezzi JM, Santos MJ, Bastias-Candia S, Pinto C, Godoy JA, Inestrosa NC. PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Biol Rev Camb Philos Soc. 2017;92(4):2046–69. https://doi.org/10.1111/brv.12320.

    Article  PubMed  Google Scholar 

  9. Lemke G. Biology of the TAM receptors. Cold Spring Harb Perspect Biol. 2013;5(11):a009076. https://doi.org/10.1101/cshperspect.a009076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fourgeaud L, Traves PG, Tufail Y, Leal-Bailey H, Lew ED, Burrola PG, et al. TAM receptors regulate multiple features of microglial physiology. Nature. 2016;532(7598):240–4. https://doi.org/10.1038/nature17630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Woo MS, Wang X, Faustino JV, Derugin N, Wendland MF, Zhou P, et al. Genetic deletion of CD36 enhances injury after acute neonatal stroke. Ann Neurol. 2012;72(6):961–70. https://doi.org/10.1002/ana.23727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Flores JJ, Klebe D, Rolland WB, Lekic T, Krafft PR, Zhang JH. PPARgamma-induced upregulation of CD36 enhances hematoma resolution and attenuates long-term neurological deficits after germinal matrix hemorrhage in neonatal rats. Neurobiol Dis. 2016;87:124–33. https://doi.org/10.1016/j.nbd.2015.12.015.

    Article  CAS  PubMed  Google Scholar 

  13. Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P, Grinstein S. LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J. 2007;26(2):313–24. https://doi.org/10.1038/sj.emboj.7601511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee H, Kim YO, Kim H, Kim SY, Noh HS, Kang SS, et al. Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J. 2003;17(13):1943–4. https://doi.org/10.1096/fj.03-0057fje.

    Article  CAS  PubMed  Google Scholar 

  15. Li HD, Chen X, Yang Y, Huang HM, Zhang L, Zhang X, et al. Wogonin attenuates inflammation by activating PPAR-gamma in alcoholic liver disease. Int Immunopharmacol. 2017;50:95–106. https://doi.org/10.1016/j.intimp.2017.06.013.

    Article  CAS  PubMed  Google Scholar 

  16. Chen S, Xiong J, Zhan Y, Liu W, Wang X. Wogonin inhibits LPS-induced inflammatory responses in rat dorsal root ganglion neurons via inhibiting TLR4-MyD88-TAK1-mediated NF-kappaB and MAPK signaling pathway. Cell Mol Neurobiol. 2015;35(4):523–31. https://doi.org/10.1007/s10571-014-0148-4.

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura T, Xi G, Hua Y, Schallert T, Hoff JT, Keep RF. Intracerebral hemorrhage in mice: model characterization and application for genetically modified mice. J Cereb Blood Flow Metab. 2004;24(5):487–94. https://doi.org/10.1097/00004647-200405000-00002.

    Article  PubMed  Google Scholar 

  18. Chen CC, Hung TH, Wang YH, Lin CW, Wang PY, Lee CY, et al. Wogonin improves histological and functional outcomes, and reduces activation of TLR4/NF-kappaB signaling after experimental traumatic brain injury. PLoS One. 2012;7(1):e30294. https://doi.org/10.1371/journal.pone.0030294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo M, Li C, Lei Y, Xu S, Zhao D, Lu XY. Role of the adipose PPARgamma-adiponectin axis in susceptibility to stress and depression/anxiety-related behaviors. Mol Psychiatry. 2017;22(7):1056–68. https://doi.org/10.1038/mp.2016.225.

    Article  CAS  PubMed  Google Scholar 

  20. Hua Y, Schallert T, Keep RF, Wu J, Hoff JT, Xi G. Behavioral tests after intracerebral hemorrhage in the rat. Stroke. 2002;33(10):2478–84. https://doi.org/10.1161/01.str.0000032302.91894.0f.

    Article  PubMed  Google Scholar 

  21. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology. 2000;39(5):777–87. https://doi.org/10.1016/s0028-3908(00)00005-8.

    Article  CAS  PubMed  Google Scholar 

  22. Xi G, Keep RF, Hua Y, Xiang J, Hoff JT. Attenuation of thrombin-induced brain edema by cerebral thrombin preconditioning. Stroke. 1999;30(6):1247–55. https://doi.org/10.1161/01.str.30.6.1247.

    Article  CAS  PubMed  Google Scholar 

  23. Wang W, Xia T, Yu X. Wogonin suppresses inflammatory response and maintains intestinal barrier function via TLR4-MyD88-TAK1-mediated NF-kappaB pathway in vitro. Inflamm Res. 2015;64(6):423–31. https://doi.org/10.1007/s00011-015-0822-0.

    Article  CAS  PubMed  Google Scholar 

  24. Chu H, Huang C, Dong J, Yang X, Xiang J, Dong Q, et al. Lactate dehydrogenase predicts early hematoma expansion and poor outcomes in intracerebral hemorrhage patients. Transl Stroke Res. 2019;10(6):620–9. https://doi.org/10.1007/s12975-019-0686-7.

    Article  CAS  PubMed  Google Scholar 

  25. Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92(4):463–77. https://doi.org/10.1016/j.pneurobio.2010.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen S, Yang Q, Chen G, Zhang JH. An update on inflammation in the acute phase of intracerebral hemorrhage. Transl Stroke Res. 2015;6(1):4–8. https://doi.org/10.1007/s12975-014-0384-4.

    Article  CAS  PubMed  Google Scholar 

  27. Wang T, Nowrangi D, Yu L, Lu T, Tang J, Han B, et al. Activation of dopamine D1 receptor decreased NLRP3-mediated inflammation in intracerebral hemorrhage mice. J Neuroinflammation. 2018;15(1):2. https://doi.org/10.1186/s12974-017-1039-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang X, Dong H, Li N, Zhang S, Sun J, Zhang S, et al. Activated brain mast cells contribute to postoperative cognitive dysfunction by evoking microglia activation and neuronal apoptosis. J Neuroinflammation. 2016;13(1):127. https://doi.org/10.1186/s12974-016-0592-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wan S, Cheng Y, Jin H, Guo D, Hua Y, Keep RF, et al. Microglia activation and polarization after intracerebral hemorrhage in mice: the role of protease-activated receptor-1. Transl Stroke Res. 2016;7(6):478–87. https://doi.org/10.1007/s12975-016-0472-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83(6):835–9. https://doi.org/10.1016/0092-8674(95)90199-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kinouchi T, Kitazato KT, Shimada K, Yagi K, Tada Y, Matsushita N, et al. Treatment with the PPARgamma agonist pioglitazone in the early post-ischemia phase inhibits pro-inflammatory responses and promotes neurogenesis via the activation of innate- and bone marrow-derived stem cells in rats. Transl Stroke Res. 2018;9(3):306–16. https://doi.org/10.1007/s12975-017-0577-8.

    Article  CAS  PubMed  Google Scholar 

  32. Xu J, Barger SW, Drew PD. The PPAR-gamma agonist 15-deoxy-delta-prostaglandin J(2) attenuates microglial production of IL-12 family cytokines: potential relevance to Alzheimer’s disease. PPAR Res. 2008;2008:349185–9. https://doi.org/10.1155/2008/349185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iglesias J, Morales L, Barreto GE. Metabolic and inflammatory adaptation of reactive astrocytes: role of PPARs. Mol Neurobiol. 2017;54(4):2518–38. https://doi.org/10.1007/s12035-016-9833-2.

    Article  CAS  PubMed  Google Scholar 

  34. Hafizi S, Dahlback B. Gas6 and protein S. vitamin K-dependent ligands for the Axl receptor tyrosine kinase subfamily. FEBS J. 2006;273(23):5231–44. https://doi.org/10.1111/j.1742-4658.2006.05529.x.

    Article  CAS  PubMed  Google Scholar 

  35. Wium M, Paccez JD, Zerbini LF. The dual role of TAM receptors in autoimmune diseases and cancer: an overview. Cells. 2018;7(10). https://doi.org/10.3390/cells7100166.

  36. Bernardo A, Ajmone-Cat MA, Gasparini L, Ongini E, Minghetti L. Nuclear receptor peroxisome proliferator-activated receptor-gamma is activated in rat microglial cells by the anti-inflammatory drug HCT1026, a derivative of flurbiprofen. J Neurochem. 2005;92(4):895–903. https://doi.org/10.1111/j.1471-4159.2004.02932.x.

    Article  CAS  PubMed  Google Scholar 

  37. Tong LS, Shao AW, Ou YB, Guo ZN, Manaenko A, Dixon BJ, et al. Recombinant Gas6 augments Axl and facilitates immune restoration in an intracerebral hemorrhage mouse model. J Cereb Blood Flow Metab. 2017;37(6):1971–81. https://doi.org/10.1177/0271678X16658490.

    Article  CAS  PubMed  Google Scholar 

  38. Trahtemberg U, Mevorach D. Apoptotic cells induced signaling for immune homeostasis in macrophages and dendritic cells. Front Immunol. 2017;8:1356. https://doi.org/10.3389/fimmu.2017.01356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Podrez EA, Febbraio M, Sheibani N, Schmitt D, Silverstein RL, Hajjar DP, et al. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest. 2000;105(8):1095–108. https://doi.org/10.1172/JCI8574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu M, Jiang M, Chen Y, Zhang S, Zhang W, Yang X, et al. Inhibition of macrophage CD36 expression and cellular oxidized low density lipoprotein (oxLDL) accumulation by Tamoxifen: a peroxisome proliferator-activated receptor (PPAR)gamma-dependent mechanism. J Biol Chem. 2016;291(33):16977–89. https://doi.org/10.1074/jbc.M116.740092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Martin E, Boucher C, Fontaine B, Delarasse C. Distinct inflammatory phenotypes of microglia and monocyte-derived macrophages in Alzheimer’s disease models: effects of aging and amyloid pathology. Aging Cell. 2017;16(1):27–38. https://doi.org/10.1111/acel.12522.

    Article  CAS  PubMed  Google Scholar 

  42. Chi C, Leonard A, Knight WE, Beussman KM, Zhao Y, Cao Y, et al. LAMP-2B regulates human cardiomyocyte function by mediating autophagosome-lysosome fusion. Proc Natl Acad Sci U S A. 2019;116(2):556–65. https://doi.org/10.1073/pnas.1808618116.

    Article  CAS  PubMed  Google Scholar 

  43. Lawrence RE, Zoncu R. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat Cell Biol. 2019;21(2):133–42. https://doi.org/10.1038/s41556-018-0244-7.

    Article  CAS  PubMed  Google Scholar 

  44. Al-Senani FM, Zhao X, Grotta JC, Shirzadi A, Strong R, Aronowski J. Proteasome inhibitor reduces astrocytic iNOS expression and functional deficit after experimental intracerebral hemorrhage in rats. Transl Stroke Res. 2012;3(1):146–53. https://doi.org/10.1007/s12975-011-0108-y.

    Article  CAS  PubMed  Google Scholar 

  45. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63. https://doi.org/10.1016/S1474-4422(05)70283-0.

    Article  PubMed  Google Scholar 

  46. Wang X, Mori T, Sumii T, Lo EH. Hemoglobin-induced cytotoxicity in rat cerebral cortical neurons: caspase activation and oxidative stress. Stroke. 2002;33(7):1882–8. https://doi.org/10.1161/01.str.0000020121.41527.5d.

    Article  CAS  PubMed  Google Scholar 

  47. Picard F, Auwerx J. PPAR (gamma) and glucose homeostasis. Annu Rev Nutr. 2002;22:167–97. https://doi.org/10.1146/annurev.nutr.22.010402.102808.

    Article  CAS  PubMed  Google Scholar 

  48. Colle R, de Larminat D, Rotenberg S, Hozer F, Hardy P, Verstuyft C, et al. PPAR-gamma agonists for the treatment of major depression: a review. Pharmacopsychiatry. 2017;50(2):49–55. https://doi.org/10.1055/s-0042-120120.

    Article  CAS  PubMed  Google Scholar 

  49. Khan NM, Haseeb A, Ansari MY, Devarapalli P, Haynie S, Haqqi TM. Wogonin, a plant derived small molecule, exerts potent anti-inflammatory and chondroprotective effects through the activation of ROS/ERK/Nrf2 signaling pathways in human osteoarthritis chondrocytes. Free Radic Biol Med. 2017;106:288–301. https://doi.org/10.1016/j.freeradbiomed.2017.02.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Seong RK, Kim JA, Shin OS. Wogonin, a flavonoid isolated from Scutellaria baicalensis, has anti-viral activities against influenza infection via modulation of AMPK pathways. Acta Virol. 2018;62(1):78–85. https://doi.org/10.4149/av_2018_109.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 81571106, 81771246, 81971099, 81870908, 81801144, 81870910), National Key R&D Program of China (2018YFC1312600, 2018YFC1312603), Key Research and Development Project of Zhejiang Province (No.2018C03011), Natural Science Foundation of Zhejiang Province (LQ20H090015), Innovative Talents Plan of Zhejiang Province (2020380752), Scientific Research Fund of Zhejiang Provincial Education Department (No. Y201941838), and Medical and Health Scientific Research Project of Zhejiang Province (2018KY408).

Author information

Authors and Affiliations

Authors

Contributions

JFZ and YCP performed the ICH model and immunofluorescence staining. CG performed drug administration. HZ performed flow cytometry. JRL performed behavioral tests. XW and PYH performed the MRI. CRX and SLC performed western blots. HHZ and HHC performed immunohistochemistry staining. XJF and CW performed qRT-PCR. YC performed cell culture. XBY and ZL performed data analysis. GC and FY conceived and designed experiments. JFZ and YCP wrote and edited the manuscript. All authors corrected and approved the final manuscript version.

Corresponding authors

Correspondence to Feng Yan or Gao Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This study was carried out in accordance with the recommendations of institutional guidelines of the Care and Use of Laboratory Animals of the National Institutes of Health and was approved by the Institutional Animal Care and Use Committee of Zhejiang University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Supplementary Figure 1

Experimental design and grouping. A-E: The experimental design and animal grouping in vivo; F-H: The experimental design and cell grouping in vitro. (PNG 39593 kb)

High resolution image (TIF 2997 kb)

Supplementary Figure 2

The expression of PPAR-γ over time after ICH. (A) Western blot for PPAR-γ proteins expression at different time points after ICH. (B) Statistical analysis of PPAR-γ protein. Values are expressed as mean ± SD. n = 6 for each group, *P < 0.05, vs Sham. (PNG 1206 kb)

High resolution image (TIF 212 kb)

Supplementary Figure 3

Distribution of Axl and MerTK after ICH. A-C: Immunofluorescence double label images showed that Axl (red) were mainly located in microglia (green) rather than neuron (green) and astrocyte (green) at day 3 after ICH; D-F: Immunofluorescence double label images showed that MerTK (red) were mainly located in microglia (green) rather than neuron (green) and astrocyte (green) at day 3 after ICH (scale bars: 50 μm). (PNG 5219 kb)

High resolution image (TIF 3985 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, J., Peng, Y., Gu, C. et al. Wogonin Accelerates Hematoma Clearance and Improves Neurological Outcome via the PPAR-γ Pathway After Intracerebral Hemorrhage. Transl. Stroke Res. 12, 660–675 (2021). https://doi.org/10.1007/s12975-020-00842-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-020-00842-9

Keywords

Navigation