Two Diverse Hemodynamic Forces, a Mechanical Stretch and a High Wall Shear Stress, Determine Intracranial Aneurysm Formation

Abstract

Intracranial aneurysm (IA) usually induced at a bifurcation site of intracranial arteries causes a lethal subarachnoid hemorrhage. Currently, IA is considered as a macrophage-mediated inflammatory disease triggered by a high wall shear stress (WSS) on endothelial cells. However, considered the fact that a high WSS can be observed at every bifurcation site, some other factors are required to develop IAs. We therefore aimed to clarify mechanisms underlying the initiation of IAs using a rat model. We found the transient outward bulging and excessive mechanical stretch at a prospective site of IA formation. Fibroblasts at the adventitia of IA walls were activated and produced (C-C motif) ligand 2 (CCL2) as well in endothelial cells loaded on high WSS at the earliest stage. Consistently, the mechanical stretch induced production of CCL2 in primary culture of fibroblasts and promoted migration of macrophages in a Transwell system. Our results suggest that distinct hemodynamic forces, mechanical stretch on fibroblasts and high WSS on endothelial cells, regulate macrophage-mediated IA formation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Juvela S, Poussa K, Porras M. Factors affecting formation and growth of intracranial aneurysms: a long-term follow-up study. Stroke. 2001;32(2):485–91.

    Article  CAS  Google Scholar 

  2. 2.

    van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007;369(9558):306–18. https://doi.org/10.1016/S0140-6736(07)60153-6.

    Article  PubMed  Google Scholar 

  3. 3.

    Aoki T, Kataoka H, Shimamura M, Nakagami H, Wakayama K, Moriwaki T, et al. NF-kappaB is a key mediator of cerebral aneurysm formation. Circulation. 2007;116(24):2830–40. https://doi.org/10.1161/CIRCULATIONAHA.107.728303.

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Aoki T, Kataoka H, Ishibashi R, Nozaki K, Egashira K, Hashimoto N. Impact of monocyte chemoattractant protein-1 deficiency on cerebral aneurysm formation. Stroke. 2009;40(3):942–51. https://doi.org/10.1161/STROKEAHA.108.532556.

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Aoki T, Frosen J, Fukuda M, Bando K, Shioi G, Tsuji K, et al. Prostaglandin E2-EP2-NF-kappaB signaling in macrophages as a potential therapeutic target for intracranial aneurysms. Sci Signal. 2017;10(465). https://doi.org/10.1126/scisignal.aah6037.

    Article  CAS  Google Scholar 

  6. 6.

    Kanematsu Y, Kanematsu M, Kurihara C, Tada Y, Tsou TL, van Rooijen N, et al. Critical roles of macrophages in the formation of intracranial aneurysm. Stroke. 2011;42(1):173–8. https://doi.org/10.1161/STROKEAHA.110.590976.

    Article  PubMed  Google Scholar 

  7. 7.

    Aoki T, Kataoka H, Nishimura M, Ishibashi R, Morishita R, Miyamoto S. Regression of intracranial aneurysms by simultaneous inhibition of nuclear factor-kappaB and Ets with chimeric decoy oligodeoxynucleotide treatment. Neurosurgery. 2012;70(6):1534–43; discussion 43. https://doi.org/10.1227/NEU.0b013e318246a390.

    Article  PubMed  Google Scholar 

  8. 8.

    Aoki T, Nishimura M, Matsuoka T, Yamamoto K, Furuyashiki T, Kataoka H, et al. PGE(2)-EP(2) signalling in endothelium is activated by haemodynamic stress and induces cerebral aneurysm through an amplifying loop via NF-kappaB. Br J Pharmacol. 2011;163(6):1237–49. https://doi.org/10.1111/j.1476-5381.2011.01358.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Meng H, Wang Z, Hoi Y, Gao L, Metaxa E, Swartz DD, et al. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke. 2007;38(6):1924–31. https://doi.org/10.1161/STROKEAHA.106.481234.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Kulcsar Z, Ugron A, Marosfoi M, Berentei Z, Paal G, Szikora I. Hemodynamics of cerebral aneurysm initiation: the role of wall shear stress and spatial wall shear stress gradient. AJNR Am J Neuroradiol. 2011;32(3):587–94. https://doi.org/10.3174/ajnr.A2339.

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Cebral J, Ollikainen E, Chung BJ, Mut F, Sippola V, Jahromi BR, et al. Flow conditions in the intracranial aneurysm lumen are associated with inflammation and degenerative changes of the aneurysm wall. AJNR Am J Neuroradiol. 2017;38(1):119–26. https://doi.org/10.3174/ajnr.A4951.

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Shojima M, Oshima M, Takagi K, Torii R, Hayakawa M, Katada K, et al. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke. 2004;35(11):2500–5. https://doi.org/10.1161/01.STR.0000144648.89172.0f.

    Article  PubMed  Google Scholar 

  13. 13.

    Yamamoto R, Aoki T, Koseki H, Fukuda M, Hirose J, Tsuji K, et al. A sphingosine-1-phosphate receptor type 1 agonist, ASP4058, suppresses intracranial aneurysm through promoting endothelial integrity and blocking macrophage transmigration. Br J Pharmacol. 2017;174(13):2085–101. https://doi.org/10.1111/bph.13820.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Huang P, Zhou CM, Qin H, Liu YY, Hu BH, Chang X, et al. Cerebralcare granule (R) attenuates blood-brain barrier disruption after middle cerebral artery occlusion in rats. Exp Neurol. 2012;237(2):453–63. https://doi.org/10.1016/j.expneurol.2012.07.017.

    Article  PubMed  Google Scholar 

  15. 15.

    Hed J, Dahlgren C, Rundquist I. A simple fluorescence technique to stain the plasma membrane of human neutrophils. Histochemistry. 1983;79(1):105–10.

    Article  CAS  Google Scholar 

  16. 16.

    Aoki T, Nishimura M. Targeting chronic inflammation in cerebral aneurysms: focusing on NF-kappaB as a putative target of medical therapy. Expert Opin Ther Targets. 2010;14(3):265–73. https://doi.org/10.1517/14728221003586836.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Ohtsuki S, Kamiya N, Hori S, Terasaki T. Vascular endothelium-selective gene induction by Tie2 promoter/enhancer in the brain and retina of a transgenic rat. Pharm Res. 2005;22(6):852–7. https://doi.org/10.1007/s11095-005-4579-y.

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Frosen J, Piippo A, Paetau A, Kangasniemi M, Niemela M, Hernesniemi J, et al. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke. 2004;35(10):2287–93. https://doi.org/10.1161/01.STR.0000140636.30204.da.

    Article  PubMed  Google Scholar 

  19. 19.

    Aoki T, Kataoka H, Morimoto M, Nozaki K, Hashimoto N. Macrophage-derived matrix metalloproteinase-2 and -9 promote the progression of cerebral aneurysms in rats. Stroke. 2007;38(1):162–9. https://doi.org/10.1161/01.STR.0000252129.18605.c8.

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Johanson CE, Stopa EG, McMillan PN. The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol. 2011;686:101–31. https://doi.org/10.1007/978-1-60761-938-3_4.

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Ghadially FN. Ultrastructural pathology of the cell and matrix: third edition volume I. Boston: Butterworth-Heinemann; 2013.

    Google Scholar 

  22. 22.

    Wang JG, Miyazu M, Matsushita E, Sokabe M, Naruse K. Uniaxial cyclic stretch induces focal adhesion kinase (FAK) tyrosine phosphorylation followed by mitogen-activated protein kinase (MAPK) activation. Biochem Biophys Res Commun. 2001;288(2):356–61. https://doi.org/10.1006/bbrc.2001.5775.

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Aoki T, Narumiya S. Prostaglandins and chronic inflammation. Trends Pharmacol Sci. 2012;33(6):304–11. https://doi.org/10.1016/j.tips.2012.02.004.

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Hishikawa T, Date I, Tokunaga K, Tominari S, Nozaki K, Shiokawa Y, et al. Risk of rupture of unruptured cerebral aneurysms in elderly patients. Neurology. 2015;85(21):1879–85. https://doi.org/10.1212/WNL.0000000000002149.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Morita A, Kirino T, Hashi K, Aoki N, Fukuhara S, Hashimoto N, et al. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med. 2012;366(26):2474–82. https://doi.org/10.1056/NEJMoa1113260.

    Article  PubMed  Google Scholar 

  26. 26.

    Hasan D, Chalouhi N, Jabbour P, Dumont AS, Kung DK, Magnotta VA, et al. Early change in ferumoxytol-enhanced magnetic resonance imaging signal suggests unstable human cerebral aneurysm: a pilot study. Stroke. 2012;43(12):3258–65. https://doi.org/10.1161/STROKEAHA.112.673400.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Aoki T, Saito M, Koseki H, Tsuji K, Tsuji A, Murata K, et al. Macrophage imaging of cerebral aneurysms with ferumoxytol: an exploratory study in an animal model and in patients. J Stroke Cerebrovasc Dis. 2017;26(10):2055–64. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.10.026.

    Article  PubMed  Google Scholar 

  28. 28.

    Hasan DM, Chalouhi N, Jabbour P, Dumont AS, Kung DK, Magnotta VA, et al. Evidence that acetylsalicylic acid attenuates inflammation in the walls of human cerebral aneurysms: preliminary results. J Am Heart Assoc. 2013;2(1):e000019. https://doi.org/10.1161/JAHA.112.000019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. 29.

    Hasan DM, Mahaney KB, Brown RD Jr, Meissner I, Piepgras DG, Huston J, et al. Aspirin as a promising agent for decreasing incidence of cerebral aneurysm rupture. Stroke. 2011;42(11):3156–62. https://doi.org/10.1161/STROKEAHA.111.619411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all of their technical staff and secretaries for their kind assistance. The authors also thank the technical assistant from the Division of Electron Microscopic Study in Center for Anatomical Studies at Kyoto University Graduate School of Medicine for electron microscopy and the National BioResource Project-Rat at Kyoto University for preparing transgenic rat line.

Funding

This study was funded by the Core Research for Evolutional Science and Technology (CREST) on Mechanobiology from the Japan Agency for Medical Research and Development (AMED) (Grant No. JP18gm0810006, T. A.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Aoki.

Ethics declarations

Conflict of Interest

T. A. was supported by the Coordination Fund from the Japanese Ministry for Education, Culture, Sports, Science and Technology (MEXT) and Astellas Pharma Inc. to Kyoto University until 31th/March/2017 and S.N. is supported by a same grant. S.N. is a scientific advisor to Astellas Pharma. H. K., H. M., S. S., N.O., K. M., K. S., K. Y., K. N., and H. K. declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. And this study was approved by the Institutional Animal Care and Use Committee of Kyoto University Graduate School of Medicine and also of National Cerebral and Cardiovascular Center. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This study was approved by the Institutional Review Board of Shimizu Hospital (Kyoto, Japan, Approval No. 203). Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 51.8 kb)

ESM 2

(PDF 397 kb)

ESM 3

(PDF 6.84 mb)

ESM 4

(PDF 13.4 mb)

ESM 5

(PDF 1518 kb)

ESM 6

(MP4 2648 kb)

ESM 7

(MP4 4352 kb)

ESM 8

(MP4 5255 kb)

ESM 9

(PDF 53 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koseki, H., Miyata, H., Shimo, S. et al. Two Diverse Hemodynamic Forces, a Mechanical Stretch and a High Wall Shear Stress, Determine Intracranial Aneurysm Formation. Transl. Stroke Res. 11, 80–92 (2020). https://doi.org/10.1007/s12975-019-0690-y

Download citation

Keywords

  • Intracranial aneurysm
  • Hemodynamic force
  • Stretch
  • Fibroblast
  • Macrophage