Quantitative Iron Neuroimaging Can Be Used to Assess the Effects of Minocycline in an Intracerebral Hemorrhage Minipig Model


Iron-mediated toxicity is a key factor causing brain injury after intracerebral hemorrhage (ICH). This study was performed to investigate the noninvasive neuroimaging method for quantifying brain iron content using a minipig ICH model and assess the effects of minocycline treatment on ICH-induced iron overload and brain injury. The minipig ICH model was established by injecting 2 ml of autologous blood into the right basal ganglia, which were then subjected to the treatments of minocycline and vehicle. Furthermore, the quantitative susceptibility mapping (QSM) was used to quantify iron content, and diffusion tensor imaging (DTI) was performed to evaluate white matter tract. Additionally, we also performed immunohistochemistry, Western blot, iron assay, Perl’s staining, brain water content, and neurological score to evaluate the iron overload and brain injury. Interestingly, we found that the ICH-induced iron overload could be accurately quantified by the QSM. Moreover, the minocycline was quite beneficial for protecting brain injury by reducing the lesion volume and brain edema, preventing brain iron accumulation, downsizing ventricle enlargement, and alleviating white matter injury and neurological deficits. In summary, we suggest that the QSM be an accurate and noninvasive method for quantifying brain iron level, and the minocycline may be a promising therapeutic agent for patients with ICH.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Cordonnier C, Demchuk A, Ziai W, Anderson CS. Intracerebral haemorrhage: current approaches to acute management. Lancet (London, England). 2018;392(10154):1257–68. https://doi.org/10.1016/s0140-6736(18)31878-6.

    Article  Google Scholar 

  2. 2.

    Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63. https://doi.org/10.1016/s1474-4422(05)70283-0.

    Article  PubMed  Google Scholar 

  3. 3.

    Hua Y, Nakamura T, Keep RF, Wu J, Schallert T, Hoff JT, et al. Long-term effects of experimental intracerebral hemorrhage: the role of iron. J Neurosurg. 2006;104(2):305–12. https://doi.org/10.3171/jns.2006.104.2.305.

    Article  PubMed  Google Scholar 

  4. 4.

    Chen Q, Tang J, Tan L, Guo J, Tao Y, Li L, et al. Intracerebral hematoma contributes to hydrocephalus after intraventricular hemorrhage via aggravating Iron accumulation. Stroke. 2015;46(10):2902–8. https://doi.org/10.1161/strokeaha.115.009713.

    Article  PubMed  Google Scholar 

  5. 5.

    Xie Q, Gu Y, Hua Y, Liu W, Keep RF, Xi G. Deferoxamine attenuates white matter injury in a piglet intracerebral hemorrhage model. Stroke. 2014;45(1):290–2. https://doi.org/10.1161/strokeaha.113.003033.

    Article  PubMed  Google Scholar 

  6. 6.

    Zhao F, Hua Y, He Y, Keep RF, Xi G. Minocycline-induced attenuation of iron overload and brain injury after experimental intracerebral hemorrhage. Stroke. 2011;42(12):3587–93. https://doi.org/10.1161/strokeaha.111.623926.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G. Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke. 2009;40(6):2241–3. https://doi.org/10.1161/strokeaha.108.539536.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Yu Y, Zhao W, Zhu C, Kong Z, Xu Y, Liu G, et al. The clinical effect of deferoxamine mesylate on edema after intracerebral hemorrhage. PLoS One. 2015;10(4):e0122371. https://doi.org/10.1371/journal.pone.0122371.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Cao S, Hua Y, Keep RF, Chaudhary N, Xi G. Minocycline effects on intracerebral hemorrhage-induced iron overload in aged rats: brain Iron quantification with magnetic resonance imaging. Stroke. 2018;49(4):995–1002. https://doi.org/10.1161/strokeaha.117.019860.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood. 2005;106(4):1460–5. https://doi.org/10.1182/blood-2004-10-3982.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Yokoo T, Yuan Q, Senegas J, Wiethoff AJ, Pedrosa I. Quantitative R2* MRI of the liver with rician noise models for evaluation of hepatic iron overload: simulation, phantom, and early clinical experience. J Magn Reson Imaging. 2015;42(6):1544–59. https://doi.org/10.1002/jmri.24948.

    Article  PubMed  Google Scholar 

  12. 12.

    Chang S, Zhang J, Liu T, Tsiouris AJ, Shou J, Nguyen T, et al. Quantitative susceptibility mapping of intracerebral hemorrhages at various stages. J Magn Reson Imaging. 2016;44(2):420–5. https://doi.org/10.1002/jmri.25143.

    Article  PubMed  Google Scholar 

  13. 13.

    Cronin MJ, Wang N, Decker KS, Wei H, Zhu WZ, Liu C. Exploring the origins of echo-time-dependent quantitative susceptibility mapping (QSM) measurements in healthy tissue and cerebral microbleeds. NeuroImage. 2017;149:98–113. https://doi.org/10.1016/j.neuroimage.2017.01.053.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Wycliffe ND, Choe J, Holshouser B, Oyoyo UE, Haacke EM, Kido DK. Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography: a retrospective study. J Magn Reson Imaging. 2004;20(3):372–7. https://doi.org/10.1002/jmri.20130.

    Article  PubMed  Google Scholar 

  15. 15.

    Haque ME, Gabr RE, Zhao X, Hasan KM, Valenzuela A, Narayana PA, et al. Serial quantitative neuroimaging of iron in the intracerebral hemorrhage pig model. J Cereb Blood Flow Metab. 2018;38(3):375–81. https://doi.org/10.1177/0271678x17751548.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Sun H, Klahr AC, Kate M, Gioia LC, Emery DJ, Butcher KS, et al. Quantitative susceptibility mapping for following intracranial hemorrhage. Radiology. 2018;288(3):830–9. https://doi.org/10.1148/radiol.2018171918.

    Article  PubMed  Google Scholar 

  17. 17.

    Vaas M, Deistung A, Reichenbach JR, Keller A, Kipar A, Klohs J. Vascular and tissue changes of magnetic susceptibility in the mouse brain after transient cerebral ischemia. Transl Stroke Res. 2018;9(4):426–35. https://doi.org/10.1007/s12975-017-0591-x.

    Article  PubMed  Google Scholar 

  18. 18.

    Dai S, Hua Y, Keep RF, Novakovic N, Fei Z, Xi G. Minocycline attenuates brain injury and iron overload after intracerebral hemorrhage in aged female rats. Neurobiol Dis. 2018;126:76–84. https://doi.org/10.1016/j.nbd.2018.06.001.

    Article  PubMed  Google Scholar 

  19. 19.

    Tang J, Chen Q, Guo J, Yang L, Tao Y, Li L, et al. Minocycline attenuates neonatal germinal-matrix-hemorrhage-induced neuroinflammation and brain edema by activating cannabinoid receptor 2. Mol Neurobiol. 2016;53(3):1935–48. https://doi.org/10.1007/s12035-015-9154-x.

    Article  PubMed  Google Scholar 

  20. 20.

    Chen-Roetling J, Chen L, Regan RF. Minocycline attenuates iron neurotoxicity in cortical cell cultures. Biochem Biophys Res Commun. 2009;386(2):322–6. https://doi.org/10.1016/j.bbrc.2009.06.026.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Malhotra K, Chang JJ, Khunger A, Blacker D, Switzer JA, Goyal N, et al. Minocycline for acute stroke treatment: a systematic review and meta-analysis of randomized clinical trials. J Neurol. 2018;265(8):1871–9. https://doi.org/10.1007/s00415-018-8935-3.

    Article  PubMed  Google Scholar 

  22. 22.

    Yang Q, Zhou L, Liu C, Liu D, Zhang Y, Li C, et al. Brain iron deposition in type 2 diabetes mellitus with and without mild cognitive impairment-an in vivo susceptibility mapping study. Brain Imaging Behav. 2018;12:1479–87. https://doi.org/10.1007/s11682-017-9815-7.

    Article  PubMed  Google Scholar 

  23. 23.

    Bilgic B, Pfefferbaum A, Rohlfing T, Sullivan EV, Adalsteinsson E. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. NeuroImage. 2012;59(3):2625–35. https://doi.org/10.1016/j.neuroimage.2011.08.077.

    Article  PubMed  Google Scholar 

  24. 24.

    Haacke EM, Tang J, Neelavalli J, Cheng YC. Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging. 2010;32(3):663–76. https://doi.org/10.1002/jmri.22276.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Du H, Xie B, Lu P, Feng H, Wang J, Yuan S. Impaired white-matter integrity in photosensitive epilepsy: a DTI study using tract-based spatial statistics. J Neuroradiol. 2014;41(2):131–5. https://doi.org/10.1016/j.neurad.2013.06.002.

    Article  PubMed  Google Scholar 

  26. 26.

    Yang F, Wang Z, Zhang JH, Tang J, Liu X, Tan L, et al. Receptor for advanced glycation end-product antagonist reduces blood-brain barrier damage after intracerebral hemorrhage. Stroke. 2015;46(5):1328–36. https://doi.org/10.1161/strokeaha.114.008336.

    Article  PubMed  Google Scholar 

  27. 27.

    Yang Y, Zhang X, Ge H, Liu W, Sun E, Ma Y, et al. Epothilone B benefits nigrostriatal pathway recovery by promoting microtubule stabilization after intracerebral hemorrhage. J Am Heart Assoc. 2018;7(2). https://doi.org/10.1161/jaha.117.007626.

  28. 28.

    Yang Y, Zhang K, Zhong J, Wang J, Yu Z, Lei X, et al. Stably maintained microtubules protect dopamine neurons and alleviate depression-like behavior after intracerebral hemorrhage. Sci Rep. 2018;8(1):12647. https://doi.org/10.1038/s41598-018-31056-7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Tanaka Y, Imai H, Konno K, Miyagishima T, Kubota C, Puentes S, et al. Experimental model of lacunar infarction in the gyrencephalic brain of the miniature pig: neurological assessment and histological, immunohistochemical, and physiological evaluation of dynamic corticospinal tract deformation. Stroke. 2008;39(1):205–12. https://doi.org/10.1161/strokeaha.107.489906.

    Article  PubMed  Google Scholar 

  30. 30.

    Tsougos I, Bakosis M, Tsivaka D, Athanassiou E, Fezoulidis I, Arvanitis D, et al. Diagnostic performance of quantitative diffusion tensor imaging for the differentiation of breast lesions at 3T MRI. Clin Imaging. 2019;53:25–31. https://doi.org/10.1016/j.clinimag.2018.10.002.

    Article  PubMed  Google Scholar 

  31. 31.

    Yan S, Tu Z, Liu Z, Fan N, Yang H, Yang S, et al. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's disease. Cell. 2018;173(4):989–1002 e13. https://doi.org/10.1016/j.cell.2018.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Liu Z, Li X, Zhang JT, Cai YJ, Cheng TL, Cheng C, et al. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature. 2016;530(7588):98–102. https://doi.org/10.1038/nature16533.

    Article  PubMed  Google Scholar 

  33. 33.

    MacLellan CL, Silasi G, Poon CC, Edmundson CL, Buist R, Peeling J, et al. Intracerebral hemorrhage models in rat: comparing collagenase to blood infusion. J Cereb Blood Flow Metab. 2008;28(3):516–25. https://doi.org/10.1038/sj.jcbfm.9600548.

    Article  PubMed  Google Scholar 

  34. 34.

    Kuhn LC. Iron regulatory proteins and their role in controlling iron metabolism. Metallomics. 2015;7(2):232–43. https://doi.org/10.1039/c4mt00164h.

    Article  PubMed  Google Scholar 

  35. 35.

    Zecca L, Berg D, Arzberger T, Ruprecht P, Rausch WD, Musicco M, et al. In vivo detection of iron and neuromelanin by transcranial sonography: a new approach for early detection of substantia nigra damage. Mov Disord. 2005;20(10):1278–85. https://doi.org/10.1002/mds.20550.

    Article  PubMed  Google Scholar 

  36. 36.

    Quintana C, Bellefqih S, Laval JY, Guerquin-Kern JL, Wu TD, Avila J, et al. Study of the localization of iron, ferritin, and hemosiderin in Alzheimer’s disease hippocampus by analytical microscopy at the subcellular level. J Struct Biol. 2006;153(1):42–54. https://doi.org/10.1016/j.jsb.2005.11.001.

    Article  PubMed  Google Scholar 

  37. 37.

    Swaiman KF. Hallervorden-Spatz syndrome and brain iron metabolism. Arch Neurol. 1991;48(12):1285–93.

    Article  PubMed  Google Scholar 

  38. 38.

    Garton T, Keep RF, Hua Y, Xi G. Brain iron overload following intracranial haemorrhage. Stroke Vasc Neurol. 2016;1(4):172–84. https://doi.org/10.1136/svn-2016-000042.

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kitago T, Ratan RR. Rehabilitation following hemorrhagic stroke: building the case for stroke-subtype specific recovery therapies. F1000Research. 2017;6:2044. https://doi.org/10.12688/f1000research.11913.1.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Balami JS, Buchan AM. Complications of intracerebral haemorrhage. Lancet Neurol. 2012;11(1):101–18. https://doi.org/10.1016/s1474-4422(11)70264-2.

    Article  PubMed  Google Scholar 

  41. 41.

    Lee KB, Kim JS, Hong BY, Kim YD, Hwang BY, Lim SH. The motor recovery related with brain lesion in patients with intracranial hemorrhage. Behav Neurol. 2015;2015:258161. https://doi.org/10.1155/2015/258161.

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Fouda AY, Newsome AS, Spellicy S, Waller JL, Zhi W, Hess DC, et al. Minocycline in acute cerebral hemorrhage: an early phase randomized trial. Stroke. 2017;48(10):2885–7. https://doi.org/10.1161/strokeaha.117.018658.

    Article  PubMed  Google Scholar 

  43. 43.

    Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–7. https://doi.org/10.1038/nature21029.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


The present study was funded by Southwest Hospital (grant no. SWH2017JSZD-10 and SWH2016ZDCX1011) and the National Basic Research Program of China (973 Program, no. 2014CB541600).

Author information




Y.Y., K.Z., and T.C. designed the experiments. X.Y. scanned and analyzed all MRI images. X.L., X.C., J.W., Y.Q., L.Y., Z.J., Q.C., J.X., Y.L., and Q.H. preformed the experiments and discussed the results. X.Z. collected and analyzed all the present data. Y.Y., H.F., and T.C. wrote the draft and worked on the manuscript revision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xuan Zhang or Hua Feng or Tunan Chen.

Ethics declarations

All experiments are reported in compliance with the Animal Research: Reporting in Vivo Experiments (ARRIVE) guidelines. The experimental protocols were approved by the Ethics Committee of the Third Military Medical University and performed according to the guide for the care and use of laboratory animals. All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material


(DOCX 2125 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, K., Yin, X. et al. Quantitative Iron Neuroimaging Can Be Used to Assess the Effects of Minocycline in an Intracerebral Hemorrhage Minipig Model. Transl. Stroke Res. 11, 503–516 (2020). https://doi.org/10.1007/s12975-019-00739-2

Download citation


  • Intracerebral hemorrhage
  • Minipig
  • Minocycline
  • Quantitative susceptibility mapping
  • Diffusion tensor imaging