Skip to main content

Advertisement

Log in

AAV/BBB-Mediated Gene Transfer of CHIP Attenuates Brain Injury Following Experimental Intracerebral Hemorrhage

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Cell death is a hallmark of secondary brain injury following intracerebral hemorrhage (ICH). The E3 ligase CHIP has been reported to play a key role in mediating necroptosis—an important mechanism of cell death after ICH. However, there is currently no evidence supporting a function of CHIP in ICH. In the present study, we aimed to determine whether CHIP plays an essential role in brain injury after ICH. Our findings indicated that CHIP expression was increased in the peri-hematomal area in rat models of ICH. The AAV/BBB viral platform enables non-invasive, widespread, and long-lasting global neural expression of target genes. Treatment with AAV/BBB-CHIP ameliorated brain injury and inhibited neuronal necroptosis and inflammation in wild type (WT) rats following ICH. Furthermore, rats with CHIP deficiency experienced severe brain injury and increased levels of neuronal necroptosis and inflammation relative to their WT counterparts. However, treatment with AAV/BBB-CHIP attenuated the effects of CHIP deficiency after ICH. Collectively, our results demonstrate that CHIP inhibits necroptosis and pathological inflammation following ICH, and that overexpression of CHIP may represent a therapeutic intervention for ICH. Moreover, the AAV/BBB viral platform may provide a novel avenue for the treatment of brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ICH:

intracerebral hemorrhage

CHIP:

carboxyl terminus of Hsp70-interacting protein

WT:

wild type

RIPK1:

receptor interacting protein kinase 1

RIPK3:

receptor interacting protein kinase 3

MLKL:

mixed lineage kinase domain-like pseudokinase

PBS:

phosphate-buffered saline

BBB:

blood–brain barrier

AAV:

adeno-associated virus

PI:

propidium iodide

TUNEL:

transferase-mediated deoxyuridine triphosphate-biotin nick-end labeling

H&E:

hematoxylin-eosin staining

ELISA:

enzyme-linked immunosorbent assay

IL-1β:

interleukin-1 beta

IL-6:

interleukin-6

TNF-α:

tumor necrosis factor alpha

NF-κB:

nuclear factor “kappa-light-chain-enhancer” of activated B cells

References

  1. Feigin VL, Lawes CM, Bennett DA, et al. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 2009;8:355–69.

    PubMed  Google Scholar 

  2. Sacco S, Marini C, Toni D, Olivieri L, Carolei A. Incidence and 10-year survival of intracerebral hemorrhage in a population-based registry. Stroke. 2009;40:394–9.

    PubMed  Google Scholar 

  3. Balami JS, Buchan AM. Complications of intracerebral haemorrhage. Lancet Neurol. 2012;11:101–18.

    PubMed  Google Scholar 

  4. Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373:1632–44.

    PubMed  PubMed Central  Google Scholar 

  5. Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke. 2011;42:1781–6.

    PubMed  PubMed Central  Google Scholar 

  6. Liang X, Chen Y, Zhang L, et al. Necroptosis, a novel form of caspase-independent cell death, contributes to renal epithelial cell damage in an ATP-depleted renal ischemia model. Mol Med Rep. 2014;10:719–24.

    CAS  PubMed  Google Scholar 

  7. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1:112–9.

    CAS  PubMed  Google Scholar 

  8. Vanden Berghe T, Grootjans S, Goossens V, et al. Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods. 2013;61:117–29.

    Google Scholar 

  9. Galluzzi L, Kepp O, Chan FK, et al. Necroptosis: mechanisms and relevance to disease. Annu Rev Pathol. 2017;12:103–30.

    CAS  PubMed  Google Scholar 

  10. Grootjans S, Vanden Berghe T, Vandenabeele P. Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ. 2017;24:1184–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Su X, Wang H, Kang D, Zhu J, Sun Q, Li T, et al. Necrostatin-1 ameliorates intracerebral hemorrhage-induced brain injury in mice through inhibiting RIP1/RIP3 pathway. Neurochem Res. 2015;40:643–50.

    CAS  PubMed  Google Scholar 

  12. Shen H, Liu C, Zhang D, Yao X, Zhang K, Li H, et al. Role for RIP1 in mediating necroptosis in experimental intracerebral hemorrhage model both in vivo and in vitro. Cell Death Dis. 2017;8:e2641.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Seo J, Lee EW, Sung H. CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3. Nat Cell Biol. 2016;18:291–302.

    CAS  PubMed  Google Scholar 

  14. Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol. 2014;115:25–44.

    CAS  PubMed  Google Scholar 

  15. Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517:311–20.

    CAS  PubMed  Google Scholar 

  16. Wei Q, Sha Y, Bhattacharya A, et al. Regulation of IL-4 receptor signaling by STUB1 in lung inflammation. Am J Respir Crit Care Med. 2014;189:16–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen Z, Barbi J, Bu S, Yang HY, Li Z, Gao Y, et al. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity. 2013;39:272–85.

    CAS  PubMed  Google Scholar 

  18. Zhan S, Wang T, Ge W. Multiple functions of the E3 ubiquitin ligase CHIP in immunity. Int Rev Immunol. 2017;36:300–12.

    CAS  PubMed  Google Scholar 

  19. Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016;34:204–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Morabito G, Giannelli SG, Ordazzo G, Bido S, Castoldi V, Indrigo M, et al. AAV-PHP.B-mediated global-scale expression in the mouse nervous system enables GBA1 gene therapy for wide protection from synucleinopathy. Mol Ther. 2017;25:2727–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shi CH, Rubel C, Soss SE, Sanchez-Hodge R, Zhang S, Madrigal SC, et al. Disrupted structure and aberrant function of CHIP mediates the loss of motor and cognitive function in preclinical models of SCAR16. PLoS Genet. 2018;14:e1007664.

    PubMed  PubMed Central  Google Scholar 

  22. da Silva-Candal A, Vieites-Prado A, Gutierrez-Fernandez M, et al. Blood glutamate grabbing does not reduce the hematoma in an intracerebral hemorrhage model but it is a safe excitotoxic treatment modality. J Cereb Blood Flow Metab. 2015;35:1206–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Del Prete D, Rice RC, Rajadhyaksha AM. Amyloid precursor protein (APP) may act as a substrate and a recognition unit for CRL4CRBN and Stub1 E3 ligases facilitating ubiquitination of proteins involved in presynaptic functions and neurodegeneration. J Biol Chem. 2016;291:17209–27.

    PubMed  PubMed Central  Google Scholar 

  24. Tsvetkov P, Adamovich Y, Elliott E, Shaul Y. E3 ligase STUB1/CHIP regulates NAD(P)H:quinone oxidoreductase 1 (NQO1) accumulation in aged brain, a process impaired in certain Alzheimer disease patients. J Biol Chem. 2011;286:8839–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tang MB, Li YS, Li SH, Cheng Y, Zhang S, Luo HY, et al. Anisomycin prevents OGD-induced necroptosis by regulating the E3 ligase CHIP. Sci Rep. 2018;8:6379.

    PubMed  PubMed Central  Google Scholar 

  26. Stankowski JN, Zeiger SL, Cohen EL, et al. C-terminus of heat shock cognate 70 interacting protein increases following stroke and impairs survival against acute oxidative stress. Antioxid Redox Signal. 2011;14:1787–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dickey CA, Patterson C, Dickson D, Petrucelli L. Brain CHIP: removing the culprits in neurodegenerative disease. Trends Mol Med. 2007;13:32–8.

    CAS  PubMed  Google Scholar 

  28. Saidi LJ, Polydoro M, Kay KR, Sanchez L, Mandelkow EM, Hyman BT, et al. Carboxy terminus heat shock protein 70 interacting protein reduces tau-associated degenerative changes. J Alzheimers Dis. 2015;44:937–47.

    CAS  PubMed  Google Scholar 

  29. Wang Y, Ren F, Wang Y, Feng Y, Wang D, Jia B, et al. CHIP/Stub1 functions as a tumor suppressor and represses NF-kappaB-mediated signaling in colorectal cancer. Carcinogenesis. 2014;35:983–91.

    PubMed  Google Scholar 

  30. Shang Y, He J, Wang Y, Feng Q, Zhang Y, Guo J, et al. CHIP/Stub1 regulates the Warburg effect by promoting degradation of PKM2 in ovarian carcinoma. Oncogene. 2017;36:4191–200.

    CAS  PubMed  Google Scholar 

  31. Yang K, Zhang TP, Tian C, Jia LX, du J, Li HH. Carboxyl terminus of heat shock protein 70-interacting protein inhibits angiotensin II-induced cardiac remodeling. Am J Hypertens. 2012;25:994–1001.

    CAS  PubMed  Google Scholar 

  32. Xiong W, Liu S, Cai W, Wen J, Fu Y, Peng J, et al. The carboxyl terminus of heat shock protein 70-interacting protein (CHIP) participates in high glucose-induced cardiac injury. Free Radic Biol Med. 2017;106:339–44.

    CAS  PubMed  Google Scholar 

  33. Liu T, Bao YH, Wang Y, Jiang JY. The role of necroptosis in neurosurgical diseases. Braz J Med Biol Res. 2015;48:292–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fakharnia F, Khodagholi F, Dargahi L, Ahmadiani A. Prevention of cyclophilin D-mediated mPTP opening using cyclosporine-a alleviates the elevation of necroptosis, autophagy and apoptosis-related markers following global cerebral ischemia-reperfusion. J Mol Neurosci. 2017;61:52–60.

    CAS  PubMed  Google Scholar 

  35. Linkermann A, Hackl MJ, Kunzendorf U, Walczak H, Krautwald S, Jevnikar AM. Necroptosis in immunity and ischemia-reperfusion injury. Am J Transplant. 2013;13:2797–804.

    CAS  PubMed  Google Scholar 

  36. Zhu X, Tao L, Tejima-Mandeville E, Qiu J, Park J, Garber K, et al. Plasmalemma permeability and necrotic cell death phenotypes after intracerebral hemorrhage in mice. Stroke. 2012;43:524–31.

    PubMed  Google Scholar 

  37. Qu C, Guo S, Guo H, et al. Increased serum endotoxin and elevated CD14 and IL-1beta expression in a rat model of cerebrogenic multiple organ dysfunction syndrome. Med Chem. 2009;5:462–7.

    CAS  PubMed  Google Scholar 

  38. Dohi K, Jimbo H, Ikeda Y, et al. Pharmacological brain cooling with indomethacin in acute hemorrhagic stroke: antiinflammatory cytokines and antioxidative effects. Acta Neurochir Suppl. 2006;96:57–60.

    CAS  PubMed  Google Scholar 

  39. Wu J, Yang S, Xi G, et al. Microglial activation and brain injury after intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:59–65.

    CAS  PubMed  Google Scholar 

  40. Zhang Z, Liu Y, Huang Q, Su Y, Zhang Y, Wang G, et al. NF-kappaB activation and cell death after intracerebral hemorrhage in patients. Neurol Sci. 2014;35:1097–102.

    PubMed  Google Scholar 

  41. Liu DL, Zhao LX, Zhang S, du JR. Peroxiredoxin 1-mediated activation of TLR4/NF-kappaB pathway contributes to neuroinflammatory injury in intracerebral hemorrhage. Int Immunopharmacol. 2016;41:82–9.

    PubMed  Google Scholar 

  42. Shinohara Y, Konno A, Nitta K, Matsuzaki Y, Yasui H, Suwa J, et al. Effects of neutralizing antibody production on AAV-PHP.B-mediated transduction of the mouse central nervous system. Mol Neurobiol. 2019;56:4203–14.

    CAS  PubMed  Google Scholar 

  43. Weitzman MD, Linden RM. Adeno-associated virus biology. Methods Mol Biol. 2011;807:1–23.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Academy of Medical Sciences of Zhengzhou University Translational Medicine platform.

Funding

This work was funded by the National Natural Science Foundation of China to Dr Yu-ming Xu (Key Program grant number 81530037, 2015; General Program grant number 91849115, 2018) and the National Natural Science Foundation of China to Dr Chang-he Shi (General Program grant number 81771290, 2017).

Author information

Authors and Affiliations

Authors

Contributions

Yu-ming Xu supervised the whole project; Yu-ming Xu and Chang-he Shi designed and supported the study; Shuo Zhang and Zheng-wei Hu contributed to AAV particle production and immunofluorescence staining; Shuo Zhang, Zheng-wei Hu, Yao-he Wang, and Zhong-xian Zhang performed ICH operations; Shuo Zhang, Hai-yang Luo, Yu-sheng Li, and Bo Song performed behavioral testing, BBB permeability experiments, and H&E staining; Cheng-yuan Mao, Hai-yang Luo, and Mi-bo Tang performed Western blotting; Li-yuan Fan, Yao Zhang, and Wen-kai Yu contributed to ELISA experiments; Shuo Zhang, Zheng-wei Hu, Cheng-yuan Mao, and Hai-yang Luo analyzed the data; and Yu-ming Xu, Chang-he Shi, and Shuo Zhang wrote the manuscript.

Corresponding authors

Correspondence to Chang-he Shi or Yu-ming Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Hu, Zw., Luo, Hy. et al. AAV/BBB-Mediated Gene Transfer of CHIP Attenuates Brain Injury Following Experimental Intracerebral Hemorrhage. Transl. Stroke Res. 11, 296–309 (2020). https://doi.org/10.1007/s12975-019-00715-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-019-00715-w

Keywords

Navigation