Advertisement

Reversal of Global Ischemia-Induced Cognitive Dysfunction by Delayed Inhibition of TRPM2 Ion Channels

  • Robert M. Dietz
  • Ivelisse Cruz-Torres
  • James E. Orfila
  • Olivia P. Patsos
  • Kaori Shimizu
  • Nicholas Chalmers
  • Guiying Deng
  • Erika Tiemeier
  • Nidia Quillinan
  • Paco S. HersonEmail author
Original Article

Abstract

Hippocampal injury and cognitive impairments are common after cardiac arrest and stroke and do not have an effective intervention despite much effort. Therefore, we developed a new approach aimed at reversing synaptic dysfunction by targeting TRPM2 channels. Cardiac arrest/cardiopulmonary resuscitation (CA/CPR) in mice was used to investigate cognitive deficits and the role of the calcium-permeable ion channel transient receptor potential-M2 (TRPM2) in ischemia-induced synaptic dysfunction. Our data indicates that absence (TRPM2−/−) or acute inhibition of TRPM2 channels with tatM2NX reduced hippocampal cell death in males only, but prevented synaptic plasticity deficits in both sexes. Remarkably, administration of tatM2NX weeks after injury reversed hippocampal plasticity and memory deficits. Finally, TRPM2-dependent activation of calcineurin-GSK3β pathway contributes to synaptic plasticity impairments. These data suggest persistent TRPM2 activity following ischemia contributes to impairments of the surviving hippocampal network and that inhibition of TRPM2 channels at chronic time points may represent a novel strategy to improve functional recovery following cerebral ischemia that is independent of neuroprotection.

Keywords

Neurorestoration Synaptic plasticity LTP Cognitive impairment Stroke Cardiac arrest 

Notes

Acknowledgments

We thank Joan Yonchek for her expert assistance with histology preparation and unwavering support.

Author Contributions

Conceptualization: P.S.H.; Methodology: R.M.D, I.C-T, J.E.O., N.Q., P.S.H.; Investigation: R.M.D., I.C-T, J.E.O., O.P.P., K.S., N.C., G.D., E.T; Writing original draft: R.M.D. and I.C-T.; Writing, reviewing, and editing: R.M.D., I.C-T., J.E.O., N.Q., P.S.H., Funding acquisition: R.M.D., P.S.H.

Funding Information

This study was funded by extramural grant support. This research was supported by National Institutes of Health grants T32GM007635 (Pharmacology training grant), K08NS097586 (R.M.D), and R01NS092645 (P.S.H).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable national and institutional guidelines for the care and use of animals were followed. Ethical approval: This article does not contain any studies with human participants.

Supplementary material

12975_2019_712_MOESM1_ESM.docx (193 kb)
ESM 1 (DOCX 193 kb)

References

  1. 1.
    Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019:CIR0000000000000659.  https://doi.org/10.1161/CIR.0000000000000659.
  2. 2.
    Tiainen M, Poutiainen E, Kovala T, Takkunen O, Happola O, Roine RO. Cognitive and neurophysiological outcome of cardiac arrest survivors treated with therapeutic hypothermia. Stroke. 2007;38(8):2303–8.  https://doi.org/10.1161/STROKEAHA.107.483867. CrossRefPubMedGoogle Scholar
  3. 3.
    Moulaert VR, Verbunt JA, van Heugten CM, Wade DT. Cognitive impairments in survivors of out-of-hospital cardiac arrest: a systematic review. Resuscitation. 2009;80(3):297–305.  https://doi.org/10.1016/j.resuscitation.2008.10.034.CrossRefPubMedGoogle Scholar
  4. 4.
    Cronberg T, Lilja G, Rundgren M, Friberg H, Widner H. Long-term neurological outcome after cardiac arrest and therapeutic hypothermia. Resuscitation. 2009;80(10):1119–23.  https://doi.org/10.1016/j.resuscitation.2009.06.021.CrossRefPubMedGoogle Scholar
  5. 5.
    Mateen FJ, Josephs KA, Trenerry MR, Felmlee-Devine MD, Weaver AL, Carone M, et al. Long-term cognitive outcomes following out-of-hospital cardiac arrest: a population-based study. Neurology. 2011;77(15):1438–45.  https://doi.org/10.1212/WNL.0b013e318232ab33.CrossRefPubMedGoogle Scholar
  6. 6.
    Beesems SG, Wittebrood KM, de Haan RJ, Koster RW. Cognitive function and quality of life after successful resuscitation from cardiac arrest. Resuscitation. 2014;85(9):1269–74.  https://doi.org/10.1016/j.resuscitation.2014.05.027.CrossRefPubMedGoogle Scholar
  7. 7.
    Horn M, Schlote W. Delayed neuronal death and delayed neuronal recovery in the human brain following global ischemia. Acta Neuropathol. 1992;85(1):79–87.CrossRefGoogle Scholar
  8. 8.
    Deng G, Yonchek JC, Quillinan N, Strnad FA, Exo J, Herson PS, et al. A novel mouse model of pediatric cardiac arrest and cardiopulmonary resuscitation reveals age-dependent neuronal sensitivities to ischemic injury. J Neurosci Methods. 2014;222:34–41.  https://doi.org/10.1016/j.jneumeth.2013.10.015.CrossRefPubMedGoogle Scholar
  9. 9.
    Clarkson AN, Huang BS, Macisaac SE, Mody I, Carmichael ST. Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature. 2010;468(7321):305–9.  https://doi.org/10.1038/nature09511.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Carmichael ST. Brain excitability in stroke: the yin and yang of stroke progression. Arch Neurol. 2012;69(2):161–7.  https://doi.org/10.1001/archneurol.2011.1175.CrossRefPubMedGoogle Scholar
  11. 11.
    Joy MT, Ben Assayag E, Shabashov-Stone D, Liraz-Zaltsman S, Mazzitelli J, Arenas M, et al. CCR5 is a therapeutic target for recovery after stroke and traumatic brain injury. Cell. 2019;176(5):1143–57 e13.  https://doi.org/10.1016/j.cell.2019.01.044.CrossRefPubMedGoogle Scholar
  12. 12.
    Lin YH, Dong J, Tang Y, Ni HY, Zhang Y, Su P, et al. Opening a new time window for treatment of stroke by targeting HDAC2. J Neurosci. 2017;37(28):6712–28.  https://doi.org/10.1523/JNEUROSCI.0341-17.2017.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Orfila JE, Grewal H, Dietz RM, Strnad F, Shimizu T, Moreno M, et al. Delayed inhibition of tonic inhibition enhances functional recovery following experimental ischemic stroke. J Cereb Blood Flow Metab. 2017;39:271678X17750761.  https://doi.org/10.1177/0271678X17750761.CrossRefGoogle Scholar
  14. 14.
    Dietz RM, Orfila JE, Rodgers KM, Patsos OP, Deng G, Chalmers N, et al. Juvenile cerebral ischemia reveals age-dependent BDNF-TrkB signaling changes: novel mechanism of recovery and therapeutic intervention. J Cereb Blood Flow Metab. 2018;38:271678X18766421.  https://doi.org/10.1177/0271678X18766421.CrossRefGoogle Scholar
  15. 15.
    Orfila JE, Shimizu K, Garske AK, Deng G, Maylie J, Traystman RJ, et al. Increasing small conductance Ca2+-activated potassium channel activity reverses ischemia-induced impairment of long-term potentiation. Eur J Neurosci. 2014;40(8):3179–88.  https://doi.org/10.1111/ejn.12683.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S. Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res. 2006;26(3):159–78.  https://doi.org/10.1080/10799890600637506.CrossRefPubMedGoogle Scholar
  17. 17.
    Ostapchenko VG, Chen M, Guzman MS, Xie YF, Lavine N, Fan J, et al. The transient receptor potential melastatin 2 (TRPM2) channel contributes to beta-amyloid oligomer-related neurotoxicity and memory impairment. J Neurosci. 2015;35(45):15157–69.  https://doi.org/10.1523/JNEUROSCI.4081-14.2015.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Alawieyah Syed Mortadza S, Sim JA, Neubrand VE, Jiang LH. A critical role of TRPM2 channel in Abeta42 -induced microglial activation and generation of tumor necrosis factor-alpha. Glia. 2018;66(3):562–75.  https://doi.org/10.1002/glia.23265.CrossRefPubMedGoogle Scholar
  19. 19.
    Jang Y, Lee SH, Lee B, Jung S, Khalid A, Uchida K, et al. TRPM2, a susceptibility gene for bipolar disorder, regulates glycogen synthase kinase-3 activity in the brain. J Neurosci. 2015;35(34):11811–23.  https://doi.org/10.1523/JNEUROSCI.5251-14.2015.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Alim I, Teves L, Li R, Mori Y, Tymianski M. Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death. J Neurosci. 2013;33(44):17264–77.  https://doi.org/10.1523/JNEUROSCI.1729-13.2013.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rempe DA, Takano T, Nedergaard M. TR(I)Pping towards treatment for ischemia. Nat Neurosci. 2009;12(10):1215–6.CrossRefGoogle Scholar
  22. 22.
    Jia J, Verma S, Nakayama S, Quillinan N, Grafe MR, Hurn PD, et al. Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J Cereb Blood Flow Metab. 2011;31:2160–8.  https://doi.org/10.1038/jcbfm.2011.77. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shimizu T, Dietz RM, Cruz-Torres I, Strnad F, Garske AK, Moreno M, et al. Extended therapeutic window of a novel peptide inhibitor of TRPM2 channels following focal cerebral ischemia. Exp Neurol. 2016;283(Pt A):151–6.  https://doi.org/10.1016/j.expneurol.2016.06.015.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nakayama S, Vest R, Traystman RJ, Herson PS. Sexually dimorphic response of TRPM2 inhibition following cardiac arrest-induced global cerebral ischemia in mice. J Mol Neurosci. 2013;51:92–8.  https://doi.org/10.1007/s12031-013-0005-9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Shimizu T, Macey TA, Quillinan N, Klawitter J, Perraud AL, Traystman RJ, et al. Androgen and PARP-1 regulation of TRPM2 channels after ischemic injury. J Cereb Blood Flow Metab. 2013;33(10):1549–55.  https://doi.org/10.1038/jcbfm.2013.105.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Quillinan N, Grewal H, Klawitter J, Herson PS. Sex steroids do not modulate TRPM2-mediated injury in females following middle cerebral artery occlusion. eNeuro. 2015;1:1–8.Google Scholar
  27. 27.
    Shimizu K, Quillinan N, Orfila JE, Herson PS. Sirtuin-2 mediates male specific neuronal injury following experimental cardiac arrest through activation of TRPM2 ion channels. Exp Neurol. 2016;275(Pt 1):78–83.  https://doi.org/10.1016/j.expneurol.2015.10.014.CrossRefPubMedGoogle Scholar
  28. 28.
    Xie YF, Belrose JC, Lei G, Tymianski M, Mori Y, Macdonald JF, et al. Dependence of NMDA/GSK-3beta mediated metaplasticity on TRPM2 channels at hippocampal CA3-CA1 synapses. Mol Brain. 2011;4:44.  https://doi.org/10.1186/1756-6606-4-44.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Deng G, Carter J, Traystman RJ, Wagner DH, Herson PS. Pro-inflammatory T-lymphocytes rapidly infiltrate into the brain and contribute to neuronal injury following cardiac arrest and cardiopulmonary resuscitation. J Neuroimmunol. 2014;274(1–2):132–40.  https://doi.org/10.1016/j.jneuroim.2014.07.009.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dietz RM, Deng G, Orfila JE, Hui X, Traystman RJ, Herson PS. Therapeutic hypothermia protects against ischemia-induced impairment of synaptic plasticity following juvenile cardiac arrest in sex-dependent manner. Neuroscience. 2016;325:132–41.  https://doi.org/10.1016/j.neuroscience.2016.03.052.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Herson PS, Hurn PD. Gender and the Injured Brain. Prog Brain Res. 2010;186:177–87.  https://doi.org/10.1016/B978-0-444-53630-3.00012-9
  32. 32.
    Deng G, Orfila JE, Dietz RM, Moreno-Garcia M, Rodgers KM, Coultrap SJ, et al. Autonomous CaMKII activity as a drug target for histological and functional neuroprotection after resuscitation from cardiac arrest. Cell Rep. 2017;18(5):1109–17.  https://doi.org/10.1016/j.celrep.2017.01.011.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Deng G, Yonchek JC, Quillinan N, Strnad FA, Exo J, Herson PS, et al. A novel mouse model of pediatric cardiac arrest and cardiopulmonary resuscitation reveals age-dependent neuronal sensitivities to ischemic injury. J Neurosci Methods. 2013;222:34–41.  https://doi.org/10.1016/j.jneumeth.2013.10.015.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jo J, Whitcomb DJ, Olsen KM, Kerrigan TL, Lo SC, Bru-Mercier G, et al. Abeta(1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3beta. Nat Neurosci. 2011;14(5):545–7.  https://doi.org/10.1038/nn.2785.CrossRefPubMedGoogle Scholar
  35. 35.
    Hicks JW, VanBrocklin HF, Wilson AA, Houle S, Vasdev N. Radiolabeled small molecule protein kinase inhibitors for imaging with PET or SPECT. Molecules. 2010;15(11):8260–78.  https://doi.org/10.3390/molecules15118260.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhu W, Wang L, Zhang L, Palmateer JM, Libal NL, Hurn PD, et al. Isoflurane preconditioning neuroprotection in experimental focal stroke is androgen-dependent in male mice. Neuroscience. 2010;169(2):758–69.  https://doi.org/10.1016/j.neuroscience.2010.05.038.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Uchida M, Palmateer JM, Herson PS, DeVries AC, Cheng J, Hurn PD. Dose-dependent effects of androgens on outcome after focal cerebral ischemia in adult male mice. J Cereb Blood Flow Metab. 2009;29(8):1454–62.  https://doi.org/10.1038/jcbfm.2009.60.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Miller BA, Zhang W. TRP channels as mediators of oxidative stress. Adv Exp Med Biol. 2011;704:531–44.  https://doi.org/10.1007/978-94-007-0265-3_29.CrossRefPubMedGoogle Scholar
  39. 39.
    Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium. 2010;47(2):122–9.CrossRefGoogle Scholar
  40. 40.
    Toda T, Yamamoto S, Umehara N, Mori Y, Wakamori M, Shimizu S. Protective effects of duloxetine against cerebral ischemia-reperfusion injury via transient receptor potential melastatin 2 inhibition. J Pharmacol Exp Ther. 2019;368(2):246–54.  https://doi.org/10.1124/jpet.118.253922.CrossRefPubMedGoogle Scholar
  41. 41.
    Gelderblom M, Melzer N, Schattling B, Gob E, Hicking G, Arunachalam P, et al. Transient receptor potential melastatin subfamily member 2 cation channel regulates detrimental immune cell invasion in ischemic stroke. Stroke. 2014;45(11):3395–402.  https://doi.org/10.1161/STROKEAHA.114.005836.CrossRefPubMedGoogle Scholar
  42. 42.
    Verma S, Quillinan N, Yang YF, Nakayama S, Cheng J, Kelley MH, et al. TRPM2 channel activation following in vitro ischemia contributes to male hippocampal cell death. Neurosci Lett. 2012;530(1):41–6.  https://doi.org/10.1016/j.neulet.2012.09.044.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD, Hill K, et al. TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol. 2004;143(1):186–92.CrossRefGoogle Scholar
  44. 44.
    Miller BA. Inhibition of TRPM2 function by PARP inhibitors protects cells from oxidative stress-induced death. Br J Pharmacol. 2004;143(5):515–6.  https://doi.org/10.1038/sj.bjp.0705923.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Yang KT, Chang WL, Yang PC, Chien CL, Lai MS, Su MJ, et al. Activation of the transient receptor potential M2 channel and poly(ADP-ribose) polymerase is involved in oxidative stress-induced cardiomyocyte death. Cell Death Differ. 2006;13(10):1815–26.CrossRefGoogle Scholar
  46. 46.
    Fairbanks SL, Vest R, Verma S, Traystman RJ, Herson PS. Sex stratified neuronal cultures to study ischemic cell death pathways. J Visualized Exp. 2013;2013(82):e50758.  https://doi.org/10.3791/50758.CrossRefGoogle Scholar
  47. 47.
    Grubisha O, Rafty LA, Takanishi CL, Xu X, Tong L, Perraud AL, et al. Metabolite of SIR2 reaction modulates TRPM2 ion channel. J Biol Chem. 2006;281(20):14057–65.CrossRefGoogle Scholar
  48. 48.
    Kelly S, Zhao H, Hua Sun G, Cheng D, Qiao Y, Luo J, et al. Glycogen synthase kinase 3beta inhibitor Chir025 reduces neuronal death resulting from oxygen-glucose deprivation, glutamate excitotoxicity, and cerebral ischemia. Exp Neurol. 2004;188(2):378–86.  https://doi.org/10.1016/j.expneurol.2004.04.004.CrossRefPubMedGoogle Scholar
  49. 49.
    Endo H, Nito C, Kamada H, Nishi T, Chan PH. Activation of the Akt/GSK3beta signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J Cereb Blood Flow Metab. 2006;26(12):1479–89.  https://doi.org/10.1038/sj.jcbfm.9600303.CrossRefPubMedGoogle Scholar
  50. 50.
    Bradley CA, Peineau S, Taghibiglou C, Nicolas CS, Whitcomb DJ, Bortolotto ZA, et al. A pivotal role of GSK-3 in synaptic plasticity. Front Mol Neurosci. 2012;5:13.  https://doi.org/10.3389/fnmol.2012.00013.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, et al. LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron. 2007;53(5):703–17.  https://doi.org/10.1016/j.neuron.2007.01.029.CrossRefPubMedGoogle Scholar
  52. 52.
    Peineau S, Nicolas CS, Bortolotto ZA, Bhat RV, Ryves WJ, Harwood AJ, et al. A systematic investigation of the protein kinases involved in NMDA receptor-dependent LTD: evidence for a role of GSK-3 but not other serine/threonine kinases. Mol Brain. 2009;2:22.  https://doi.org/10.1186/1756-6606-2-22.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Collingridge GL, Peineau S, Howland JG, Wang YT. Long-term depression in the CNS. Nat Rev Neurosci. 2010;11(7):459–73.  https://doi.org/10.1038/nrn2867.CrossRefPubMedGoogle Scholar
  54. 54.
    Hooper C, Markevich V, Plattner F, Killick R, Schofield E, Engel T, et al. Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J Neurosci. 2007;25(1):81–6.  https://doi.org/10.1111/j.1460-9568.2006.05245.x.CrossRefPubMedGoogle Scholar
  55. 55.
    Fourgeaud L, Dvorak C, Faouzi M, Starkus J, Sahdeo S, Wang Q, et al. Pharmacology of JNJ-28583113: a novel TRPM2 antagonist. Eur J Pharmacol. 2019.  https://doi.org/10.1016/j.ejphar.2019.03.043.
  56. 56.
    King MK, Pardo M, Cheng Y, Downey K, Jope RS, Beurel E. Glycogen synthase kinase-3 inhibitors: rescuers of cognitive impairments. Pharmacol Ther. 2014;141(1):1–12.  https://doi.org/10.1016/j.pharmthera.2013.07.010.CrossRefPubMedGoogle Scholar
  57. 57.
    Rudy JW, O’Reilly RC. Conjunctive representations, the hippocampus, and contextual fear conditioning. Cogn Affect Behav Neurosci. 2001;1(1):66–82.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Robert M. Dietz
    • 1
    • 2
  • Ivelisse Cruz-Torres
    • 2
    • 3
  • James E. Orfila
    • 2
    • 4
  • Olivia P. Patsos
    • 2
    • 4
  • Kaori Shimizu
    • 2
    • 4
  • Nicholas Chalmers
    • 2
    • 4
  • Guiying Deng
    • 2
    • 4
  • Erika Tiemeier
    • 2
    • 4
  • Nidia Quillinan
    • 2
    • 4
  • Paco S. Herson
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of PediatricsUniversity of Colorado School of MedicineAuroraUSA
  2. 2.Neuronal Injury & Plasticity ProgramUniversity of Colorado School of MedicineAuroraUSA
  3. 3.Department of PharmacologyUniversity of Colorado School of MedicineAuroraUSA
  4. 4.Department of AnesthesiologyUniversity of Colorado School of MedicineAuroraUSA

Personalised recommendations