Skip to main content

Advertisement

Log in

Vasoconstriction and Impairment of Neurovascular Coupling after Subarachnoid Hemorrhage: a Descriptive Analysis of Retinal Changes

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Impaired cerebral autoregulation and neurovascular coupling (NVC) contribute to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). Retinal vessel analysis (RVA) allows non-invasive assessment of vessel dimension and NVC hereby demonstrating a predictive value in the context of various neurovascular diseases. Using RVA as a translational approach, we aimed to assess the retinal vessels in patients with SAH. RVA was performed prospectively in 24 patients with acute SAH (group A: day 5–14), in 11 patients 3 months after ictus (group B: day 90 ± 35), and in 35 age-matched healthy controls (group C). Data was acquired using a Retinal Vessel Analyzer (Imedos Systems UG, Jena) for examination of retinal vessel dimension and NVC using flicker-light excitation. Diameter of retinal vessels—central retinal arteriolar and venular equivalent—was significantly reduced in the acute phase (p < 0.001) with gradual improvement in group B (p < 0.05). Arterial NVC of group A was significantly impaired with diminished dilatation (p < 0.001) and reduced area under the curve (p < 0.01) when compared to group C. Group B showed persistent prolonged latency of arterial dilation (p < 0.05). Venous NVC was significantly delayed after SAH compared to group C (A p < 0.001; B p < 0.05). To our knowledge, this is the first clinical study to document retinal vasoconstriction and impairment of NVC in patients with SAH. Using non-invasive RVA as a translational approach, characteristic patterns of compromise were detected for the arterial and venous compartment of the neurovascular unit in a time-dependent fashion. Recruitment will continue to facilitate a correlation analysis with clinical course and outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Budohoski KP, Czosnyka M, Kirkpatrick PJ, Smielewski P, Steiner LA, Pickard JD. Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage. Nat Rev Neurol. 2013;9(3):152–63. https://doi.org/10.1038/nrneurol.2013.11.

    Article  PubMed  CAS  Google Scholar 

  2. Foreman B. The pathophysiology of delayed cerebral ischemia. J Clin Neurophysiol. 2016;33(3):174–82. https://doi.org/10.1097/WNP.0000000000000273.

    Article  PubMed  Google Scholar 

  3. Vergouwen MD, Vermeulen M, van Gijn J, Rinkel GJ, Wijdicks EF, Muizelaar JP, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke. 2010;41(10):2391–5. https://doi.org/10.1161/STROKEAHA.110.589275.

    Article  PubMed  Google Scholar 

  4. Jaeger M, Soehle M, Schuhmann MU, Meixensberger J. Clinical significance of impaired cerebrovascular autoregulation after severe aneurysmal subarachnoid hemorrhage. Stroke. 2012;43(8):2097–101. https://doi.org/10.1161/STROKEAHA.112.659888.

    Article  PubMed  Google Scholar 

  5. Budohoski KP, Czosnyka M, Smielewski P, Kasprowicz M, Helmy A, Bulters D, et al. Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective observational study. Stroke. 2012;43(12):3230–7. https://doi.org/10.1161/STROKEAHA.112.669788.

    Article  PubMed  Google Scholar 

  6. Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017;96(1):17–42. https://doi.org/10.1016/j.neuron.2017.07.030.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Balbi M, Koide M, Schwarzmaier SM, Wellman GC, Plesnila N. Acute changes in neurovascular reactivity after subarachnoid hemorrhage in vivo. J Cereb Blood Flow Metab. 2015; https://doi.org/10.1177/0271678X15621253.

  8. Balbi M, Koide M, Wellman GC, Plesnila N. Inversion of neurovascular coupling after subarachnoid hemorrhage in vivo. J Cereb Blood Flow Metab. 2017:271678X16686595. doi:https://doi.org/10.1177/0271678X16686595.

  9. Winkler MK, Chassidim Y, Lublinsky S, Revankar GS, Major S, Kang EJ, et al. Impaired neurovascular coupling to ictal epileptic activity and spreading depolarization in a patient with subarachnoid hemorrhage: possible link to blood-brain barrier dysfunction. Epilepsia. 2012;53(Suppl 6):22–30. https://doi.org/10.1111/j.1528-1167.2012.03699.x.

    Article  PubMed  PubMed Central  Google Scholar 

  10. da Costa L, Fierstra J, Fisher JA, Mikulis DJ, Han JS, Tymianski M. BOLD MRI and early impairment of cerebrovascular reserve after aneurysmal subarachnoid hemorrhage. J Magn Reson Imaging. 2014;40(4):972–9. https://doi.org/10.1002/jmri.24474.

    Article  PubMed  Google Scholar 

  11. Patton N, Aslam T, Macgillivray T, Pattie A, Deary IJ, Dhillon B. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat. 2005;206(4):319–48. https://doi.org/10.1111/j.1469-7580.2005.00395.x.

    Article  PubMed  PubMed Central  Google Scholar 

  12. London A, Benhar I, Schwartz M. The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol. 2013;9(1):44–53. https://doi.org/10.1038/nrneurol.2012.227.

    Article  PubMed  CAS  Google Scholar 

  13. Heitmar R, Cubbidge RP, Lip GY, Gherghel D, Blann AD. Altered blood vessel responses in the eye and finger in coronary artery disease. Invest Ophthalmol Vis Sci. 2011;52(9):6199–205. https://doi.org/10.1167/iovs.10-6628.

    Article  PubMed  Google Scholar 

  14. Wong TY, Klein R, Couper DJ, Cooper LS, Shahar E, Hubbard LD, et al. Retinal microvascular abnormalities and incident stroke: the atherosclerosis risk in communities study. Lancet. 2001;358(9288):1134–40. https://doi.org/10.1016/S0140-6736(01)06253-5.

    Article  PubMed  CAS  Google Scholar 

  15. Fountas KN, Kapsalaki EZ, Lee GP, Machinis TG, Grigorian AA, Robinson JS, et al. Terson hemorrhage in patients suffering aneurysmal subarachnoid hemorrhage: predisposing factors and prognostic significance. J Neurosurg. 2008;109(3):439–44. https://doi.org/10.3171/JNS/2008/109/9/0439.

    Article  PubMed  Google Scholar 

  16. Obuchowska I, Turek G, Mariak Z, Kochanowicz J, Mariak Z. Late ophthalmological assessment of patients with subarachnoid hemorrhage and clipping of cerebral aneurysm. Acta Neurochir. 2011;153(11):2127–36. https://doi.org/10.1007/s00701-011-1161-8.

    Article  PubMed  Google Scholar 

  17. Newman EA. Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature. J Cereb Blood Flow Metab. 2013;33(11):1685–95. https://doi.org/10.1038/jcbfm.2013.145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Garhofer G, Bek T, Boehm AG, Gherghel D, Grunwald J, Jeppesen P, et al. Use of the retinal vessel analyzer in ocular blood flow research. Acta Ophthalmol. 2010;88(7):717–22. https://doi.org/10.1111/j.1755-3768.2009.01587.x.

    Article  PubMed  Google Scholar 

  19. Kotliar KE, Vilser W, Nagel E, Lanzl IM. Retinal vessel reaction in response to chromatic flickering light. Graefes Arch Clin Exp Ophthalmol. 2004;242(5):377–92. https://doi.org/10.1007/s00417-003-0847-x.

    Article  PubMed  Google Scholar 

  20. Polak K, Dorner G, Kiss B, Polska E, Findl O, Rainer G, et al. Evaluation of the Zeiss retinal vessel analyser. Br J Ophthalmol. 2000;84(11):1285–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Albanna W, Conzen C, Weiss M, Clusmann H, Fuest M, Mueller M, et al. Retinal vessel analysis (RVA) in the context of subarachnoid hemorrhage—a proof of concept study. PLoS One. 2016;11(7):e0158781. https://doi.org/10.1371/journal.pone.0158781.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. MacCormick IJ, Beare NA, Taylor TE, Barrera V, White VA, Hiscott P, et al. Cerebral malaria in children: using the retina to study the brain. Brain. 2014;137(Pt 8):2119–42. https://doi.org/10.1093/brain/awu001.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Diringer MN, Bleck TP, Claude Hemphill J 3rd, Menon D, Shutter L, Vespa P, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit Care. 2011;15(2):211–40. https://doi.org/10.1007/s12028-011-9605-9.

    Article  PubMed  Google Scholar 

  24. Rossini PM, Altamura C, Ferretti A, Vernieri F, Zappasodi F, Caulo M, et al. Does cerebrovascular disease affect the coupling between neuronal activity and local haemodynamics? Brain. 2004;127(Pt 1):99–110. https://doi.org/10.1093/brain/awh012.

    Article  PubMed  CAS  Google Scholar 

  25. Albanna W, Weiss M, Muller M, Brockmann MA, Rieg A, Conzen C, et al. Endovascular rescue therapies for refractory vasospasm after subarachnoid hemorrhage: a prospective evaluation study using multimodal, continuous event neuromonitoring. Neurosurgery. 2017;80(6):942–9. https://doi.org/10.1093/neuros/nyw132.

    Article  PubMed  Google Scholar 

  26. Nagel E, Vilser W, Fink A, Riemer T. Static vessel analysis in nonmydriatic and mydriatic images. Klin Monatsbl Augenheilkd. 2007;224(5):411–6. https://doi.org/10.1055/s-2007-963093.

    Article  PubMed  CAS  Google Scholar 

  27. Yu PK, Balaratnasingam C, Cringle SJ, McAllister IL, Provis J, Yu DY. Microstructure and network organization of the microvasculature in the human macula. Invest Ophthalmol Vis Sci. 2010;51(12):6735–43. https://doi.org/10.1167/iovs.10-5415.

    Article  PubMed  Google Scholar 

  28. Dorner GT, Garhofer G, Kiss B, Polska E, Polak K, Riva CE, et al. Nitric oxide regulates retinal vascular tone in humans. Am J Physiol Heart Circ Physiol. 2003;285(2):H631–6. https://doi.org/10.1152/ajpheart.00111.2003.

    Article  PubMed  CAS  Google Scholar 

  29. Metea MR, Newman EA. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci. 2006;26(11):2862–70. https://doi.org/10.1523/JNEUROSCI.4048-05.2006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Petzold GC, Murthy VN. Role of astrocytes in neurovascular coupling. Neuron. 2011;71(5):782–97. https://doi.org/10.1016/j.neuron.2011.08.009.

    Article  PubMed  CAS  Google Scholar 

  31. Luksch A, Garhofer G, Imhof A, Polak K, Polska E, Dorner GT, et al. Effect of inhalation of different mixtures of O(2) and CO(2) on retinal blood flow. Br J Ophthalmol. 2002;86(10):1143–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Nagaoka T, Mori F, Yoshida A. Retinal artery response to acute systemic blood pressure increase during cold pressor test in humans. Invest Ophthalmol Vis Sci. 2002;43(6):1941–5.

    PubMed  Google Scholar 

  33. Liew G, Sharrett AR, Wang JJ, Klein R, Klein BE, Mitchell P, et al. Relative importance of systemic determinants of retinal arteriolar and venular caliber: the atherosclerosis risk in communities study. Arch Ophthalmol. 2008;126(10):1404–10. https://doi.org/10.1001/archopht.126.10.1404.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Obuchowska I, Turek G, Mariak Z, Mariak Z. Early intraocular complications of subarachnoid haemorrhage after aneurysm rupture. Neuro-Ophthalmology. 2014;38(4):199–204. https://doi.org/10.3109/01658107.2014.911918.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sehba FA, Hou J, Pluta RM, Zhang JH. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol. 2012;97(1):14–37. https://doi.org/10.1016/j.pneurobio.2012.02.003.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ogoh S. Relationship between cognitive function and regulation of cerebral blood flow. J Physiol Sci. 2017; https://doi.org/10.1007/s12576-017-0525-0.

  37. Al-Khindi T, Macdonald RL, Schweizer TA. Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke. 2010;41(8):e519–36. https://doi.org/10.1161/STROKEAHA.110.581975.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mrs. Jasmin Dell’Anna and Professor Klaus Rademacher (Faculty of Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University) for supporting the constructional set up of the imaging device.

Funding

CC was supported by the START-Program of the Faculty of Medicine (RWTH Aachen University) and by the Foundation of Neurosurgical Research (German Society of Neurosurgery, 2016). WA was supported by funding from the German Society of Neurointensive and Emergency Medicine (Junior research award 2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit Alexander Schubert.

Ethics declarations

Conflict of Interest

IMEDOS Systems provided the Retinal Vessel Analyzer for research purposes only. WV is affiliated to IMEDOS Systems as the company’s CEO. WV did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

The other authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Electronic supplementary material

ESM 1

(DOCX 3942 kb)

ESM 2

(MP4 76,117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conzen, C., Albanna, W., Weiss, M. et al. Vasoconstriction and Impairment of Neurovascular Coupling after Subarachnoid Hemorrhage: a Descriptive Analysis of Retinal Changes. Transl. Stroke Res. 9, 284–293 (2018). https://doi.org/10.1007/s12975-017-0585-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-017-0585-8

Keywords

Navigation