Abstract
Newly emerged evidence reveals that ischemic stroke and Alzheimer’s disease (AD) share pathophysiological changes in brain tissue including hypoperfusion, oxidative stress, immune exhaustion, and inflammation. A mechanistic link between hypoperfusion and amyloid β accumulation can lead to cell damage as well as to motor and cognitive deficits. This review will discuss decreased cerebral perfusion and other related pathophysiological changes common to both ischemic stroke and AD, such as vascular damages, cerebral blood flow alteration, abnormal expression of amyloid β and tau proteins, as well as behavioral and cognitive deficits. Furthermore, this review highlights current treatment options and potential therapeutic targets that warrant further investigation.
Similar content being viewed by others
References
Hefter D, Draguhn A. APP as a protective factor in acute neuronal insults. Front Mol Neurosci. 2017;10:22. https://doi.org/10.3389/fnmol.2017.00022.
Kelly SC, He B, Perez SE, Ginsberg SD, Mufson EJ, Counts SE. Locus coeruleus cellular and molecular pathology during the progression of Alzheimer’s disease. Acta Neuropathol Commun. 2017;5(1):8. https://doi.org/10.1186/s40478-017-0411-2.
Reggiani AM, Simoni E, Caporaso R, Meunier J, Keller E, Maurice T, et al. In vivo characterization of ARN14140, a memantine/galantamine-based multi-target compound for Alzheimer’s disease. Sci Rep. 2016;6:33172. https://doi.org/10.1038/srep33172.
Qiu L, Ng G, Tan EK, Liao P, Kandiah N, Zeng L. Chronic cerebral hypoperfusion enhances tau hyperphosphorylation and reduces autophagy in Alzheimer’s disease mice. Sci Rep. 2016;6:23964. https://doi.org/10.1038/srep23964.
Tolppanen AM, Voutilainen A, Taipale H, Tanskanen A, Lavikainen P, Koponen M, et al. Regional changes in psychotropic use among Finnish persons with newly diagnosed Alzheimer’s disease in 2005-2011. PLoS One. 2017;12(3):e0173450. https://doi.org/10.1371/journal.pone.0173450.
Santos CY, Snyder PJ, Wu WC, Zhang M, Echeverria A, Alber J. Pathophysiologic relationship between Alzheimer’s disease, cerebrovascular disease, and cardiovascular risk: a review and synthesis. Alzheimers Dement (Amst). 2017;7:69–87. https://doi.org/10.1016/j.dadm.2017.01.005.
Alzheimer’s A. Alzheimer’s disease facts and figures. Alzheimers Dement. 2016;12(4):459–509.
Maillard P, Carmichael O, Fletcher E, Reed B, Mungas D, DeCarli C. Coevolution of white matter hyperintensities and cognition in the elderly. Neurology. 2012;79(5):442–8. https://doi.org/10.1212/WNL.0b013e3182617136.
Clark LR, Berman SE, Rivera-Rivera LA, Hoscheidt SM, Darst BF, Engelman CD, et al. Macrovascular and microvascular cerebral blood flow in adults at risk for Alzheimer’s disease. Alzheimers Dement (Amst). 2017;7:48–55. https://doi.org/10.1016/j.dadm.2017.01.002.
Imabayashi E, Yokoyama K, Tsukamoto T, Sone D, Sumida K, Kimura Y, et al. The cingulate island sign within early Alzheimer’s disease-specific hypoperfusion volumes of interest is useful for differentiating Alzheimer’s disease from dementia with Lewy bodies. EJNMMI Res. 2016;6(1):67. https://doi.org/10.1186/s13550-016-0224-5.
Chang T, Gajasinghe S, Arambepola C. Prevalence of stroke and its risk factors in urban Sri Lanka: population-based study. Stroke. 2015;46(10):2965–8. https://doi.org/10.1161/STROKEAHA.115.010203.
Lahoud N, Salameh P, Saleh N, Hosseini H. Prevalence of Lebanese stroke survivors: a comparative pilot study. J Epidemiol Glob Health. 2016;6(3):169–76. https://doi.org/10.1016/j.jegh.2015.10.001.
Wang W, Jiang B, Sun H, Ru X, Sun D, Wang L, et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults. Circulation. 2017;135(8):759–71. https://doi.org/10.1161/CIRCULATIONAHA.116.025250.
Butler EN, Evenson KR. Prevalence of physical activity and sedentary behavior among stroke survivors in the United States. Top Stroke Rehabil. 2014;21(3):246–55. https://doi.org/10.1310/tsr2103-246.
Simpkins JW, Wen Y, Perez E, Yang S, Wang X. Role of nonfeminizing estrogens in brain protection from cerebral ischemia: an animal model of Alzheimer’s disease neuropathology. Ann N Y Acad Sci. 2005;1052:233–42. https://doi.org/10.1196/annals.1347.019.
Kalaria RN. The role of cerebral ischemia in Alzheimer’s disease. Neurobiol Aging. 2000;21(2):321–30.
Au JL, Weishaupt N, Nell HJ, Whitehead SN, Cechetto DF. Motor and hippocampal dependent spatial learning and reference memory assessment in a transgenic rat model of Alzheimer’s disease with stroke. J Vis Exp 2016(109). https://doi.org/10.3791/53089.
Catanese L, Tarsia J, Fisher M. Acute ischemic stroke therapy overview. Circ Res. 2017;120(3):541–58. https://doi.org/10.1161/CIRCRESAHA.116.309278.
Khalil AA, Ostwaldt AC, Nierhaus T, Ganeshan R, Audebert HJ, Villringer K, et al. Relationship between changes in the temporal dynamics of the blood-oxygen-level-dependent signal and hypoperfusion in acute ischemic stroke. Stroke. 2017;48(4):925–31. https://doi.org/10.1161/STROKEAHA.116.015566.
Ma Y, Li L, Niu Z, Song J, Lin Y, Zhang H, et al. Effect of recombinant plasminogen activator timing on thrombolysis in a novel rat embolic stroke model. Pharmacol Res. 2016;107:291–9. https://doi.org/10.1016/j.phrs.2016.03.030.
Yueniwati Y, Darmiastini NK, Arisetijono E. Thicker carotid intima-media thickness and increased plasma VEGF levels suffered by post-acute thrombotic stroke patients. Int J Gen Med. 2016;9:447–52. https://doi.org/10.2147/IJGM.S114577.
Kim BJ, Kim JS. Ischemic stroke subtype classification: an Asian viewpoint. J Stroke. 2014;16(1):8–17. https://doi.org/10.5853/jos.2014.16.1.8.
Findler M, Molad J, Bornstein NM, Auriel E. Worse outcome in patients with acute stroke and atrial fibrillation following thrombolysis. Isr Med Assoc J. 2017;19(5):293–5.
Salinet AS, Panerai RB, Robinson TG. The longitudinal evolution of cerebral blood flow regulation after acute ischaemic stroke. Cerebrovasc Dis Extra. 2014;4(2):186–97. https://doi.org/10.1159/000366017.
Harston GW, Okell TW, Sheerin F, Schulz U, Mathieson P, Reckless I, et al. Quantification of serial cerebral blood flow in acute stroke using arterial spin labeling. Stroke. 2017;48(1):123–30. https://doi.org/10.1161/STROKEAHA.116.014707.
Liu Z, Li Y. Cortical cerebral blood flow, oxygen extraction fraction, and metabolic rate in patients with middle cerebral artery stenosis or acute stroke. AJNR Am J Neuroradiol. 2016;37(4):607–14. https://doi.org/10.3174/ajnr.A4624.
Ostergaard L, Jespersen SN, Engedahl T, Gutierrez Jimenez E, Ashkanian M, Hansen MB, et al. Capillary dysfunction: its detection and causative role in dementias and stroke. Curr Neurol Neurosci Rep. 2015;15(6):37. https://doi.org/10.1007/s11910-015-0557-x.
Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508(7494):55–60. https://doi.org/10.1038/nature13165.
ElAli A, Theriault P, Rivest S. The role of pericytes in neurovascular unit remodeling in brain disorders. Int J Mol Sci. 2014;15(4):6453–74. https://doi.org/10.3390/ijms15046453.
Liu W, Wong A, Au L, Yang J, Wang Z, Leung EY, et al. Influence of amyloid-beta on cognitive decline after stroke/transient ischemic attack: three-year longitudinal study. Stroke. 2015;46(11):3074–80. https://doi.org/10.1161/STROKEAHA.115.010449.
Fisher M, Albers GW. Advanced imaging to extend the therapeutic time window of acute ischemic stroke. Ann Neurol. 2013;73(1):4–9. https://doi.org/10.1002/ana.23744.
Robbins NM, Swanson RA. Opposing effects of glucose on stroke and reperfusion injury: acidosis, oxidative stress, and energy metabolism. Stroke. 2014;45(6):1881–6. https://doi.org/10.1161/STROKEAHA.114.004889.
Bardutzky J, Shen Q, Henninger N, Bouley J, Duong TQ, Fisher M. Differences in ischemic lesion evolution in different rat strains using diffusion and perfusion imaging. Stroke. 2005;36(9):2000–5. https://doi.org/10.1161/01.STR.0000177486.85508.4d.
Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron. 2015;86(4):883–901. https://doi.org/10.1016/j.neuron.2015.03.035.
von Kummer R, Dzialowski I. Imaging of cerebral ischemic edema and neuronal death. Neuroradiology. 2017;59(6):545–53. https://doi.org/10.1007/s00234-017-1847-6.
Bakthavachalam P, Shanmugam PS. Mitochondrial dysfunction—silent killer in cerebral ischemia. J Neurol Sci. 2017;375:417–23. https://doi.org/10.1016/j.jns.2017.02.043.
Lee PH, Bang OY, Hwang EM, Lee JS, Joo US, Mook-Jung I, et al. Circulating beta amyloid protein is elevated in patients with acute ischemic stroke. J Neural Transm (Vienna). 2005;112(10):1371–9. https://doi.org/10.1007/s00702-004-0274-0.
Takahashi RH, Nagao T, Gouras GK. Plaque formation and the intraneuronal accumulation of beta-amyloid in Alzheimer’s disease. Pathol Int. 2017;67(4):185–93. https://doi.org/10.1111/pin.12520.
Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, et al. Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci. 2014;17(5):661–3. https://doi.org/10.1038/nn.3697.
Sun S, Zhang H, Liu J, Popugaeva E, Xu NJ, Feske S, et al. Reduced synaptic STIM2 expression and impaired store-operated calcium entry cause destabilization of mature spines in mutant presenilin mice. Neuron. 2014;82(1):79–93. https://doi.org/10.1016/j.neuron.2014.02.019.
Zhang H, Wu L, Pchitskaya E, Zakharova O, Saito T, Saido T, et al. Neuronal store-operated calcium entry and mushroom spine loss in amyloid precursor protein knock-in mouse model of Alzheimer’s disease. J Neurosci. 2015;35(39):13275–86. https://doi.org/10.1523/JNEUROSCI.1034-15.2015.
Price KA, Varghese M, Sowa A, Yuk F, Brautigam H, Ehrlich ME, et al. Altered synaptic structure in the hippocampus in a mouse model of Alzheimer’s disease with soluble amyloid-beta oligomers and no plaque pathology. Mol Neurodegener. 2014;9:41. https://doi.org/10.1186/1750-1326-9-41.
Yang J, Wong A, Wang Z, Liu W, Au L, Xiong Y, et al. Risk factors for incident dementia after stroke and transient ischemic attack. Alzheimers Dement. 2015;11(1):16–23. https://doi.org/10.1016/j.jalz.2014.01.003.
Shi J, Yang SH, Stubley L, Day AL, Simpkins JW. Hypoperfusion induces overexpression of beta-amyloid precursor protein mRNA in a focal ischemic rodent model. Brain Res. 2000;853(1):1–4.
Ong LK, Zhao Z, Kluge M, Walker FR, Nilsson M. Chronic stress exposure following photothrombotic stroke is associated with increased levels of amyloid beta accumulation and altered oligomerisation at sites of thalamic secondary neurodegeneration in mice. J Cereb Blood Flow Metab. 2017;37(4):1338–48. https://doi.org/10.1177/0271678X16654920.
Lasek-Bal A, Jedrzejowska-Szypulka H, Rozycka J, Bal W, Kowalczyk A, Holecki M, et al. The presence of tau protein in blood as a potential prognostic factor in stroke patients. J Physiol Pharmacol. 2016;67(5):691–6.
Bielewicz J, Kurzepa J, Czekajska-Chehab E, Stelmasiak Z, Bartosik-Psujek H. Does serum tau protein predict the outcome of patients with ischemic stroke. J Mol Neurosci. 2011;43(3):241–5. https://doi.org/10.1007/s12031-010-9403-4.
Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol. 2002;156(6):1051–63. https://doi.org/10.1083/jcb.200108057.
Li JF, Wang Z, Sun QJ, Du YF. Expression of tau protein in rats with cognitive dysfunction induced by cerebral hypoperfusion. Int J Clin Exp Med. 2015;8(10):19682–8.
Zhao Y, Gu JH, Dai CL, Liu Q, Iqbal K, Liu F, et al. Chronic cerebral hypoperfusion causes decrease of O-GlcNAcylation, hyperphosphorylation of tau and behavioral deficits in mice. Front Aging Neurosci. 2014;6:10. https://doi.org/10.3389/fnagi.2014.00010.
Madineni A, Alhadidi Q, Shah ZA. Cofilin inhibition restores neuronal cell death in oxygen-glucose deprivation model of ischemia. Mol Neurobiol. 2016;53(2):867–78. https://doi.org/10.1007/s12035-014-9056-3.
Ploughman M, Shears J, Harris C, Hogan SH, Drodge O, Squires S, et al. Effectiveness of a novel community exercise transition program for people with moderate to severe neurological disabilities. NeuroRehabilitation. 2014;35(1):105–12. https://doi.org/10.3233/NRE-141090.
Sun JH, Tan L, Yu JT. Post-stroke cognitive impairment: epidemiology, mechanisms and management. Ann Transl Med. 2014;2(8):80. https://doi.org/10.3978/j.issn.2305-5839.2014.08.05.
Han MH, Lee EH, Koh SH. Current opinion on the role of neurogenesis in the therapeutic strategies for Alzheimer disease, Parkinson disease, and ischemic stroke; considering neuronal voiding function. Int Neurourol J. 2016;20(4):276–87. https://doi.org/10.5213/inj.1632776.388.
Love S, Miners JS. Cerebral hypoperfusion and the energy deficit in Alzheimer’s disease. Brain Pathol. 2016;26(5):607–17. https://doi.org/10.1111/bpa.12401.
Muller UC, Deller T, Korte M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci. 2017;18(5):281–98. https://doi.org/10.1038/nrn.2017.29.
Kimbrough IF, Robel S, Roberson ED, Sontheimer H. Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer’s disease. Brain. 2015;138(Pt 12):3716–33. https://doi.org/10.1093/brain/awv327.
Kandimalla R, Manczak M, Fry D, Suneetha Y, Sesaki H, Reddy PH. Reduced dynamin-related protein 1 protects against phosphorylated tau-induced mitochondrial dysfunction and synaptic damage in Alzheimer’s disease. Hum Mol Genet. 2016;25(22):4881–97. https://doi.org/10.1093/hmg/ddw312.
Marks SM, Lockhart SN, Baker SL, Jagust WJ. Tau and beta-amyloid are associated with medial temporal lobe structure, function and memory encoding in normal aging. J Neurosci. 2017; https://doi.org/10.1523/JNEUROSCI.3769-16.2017.
Chu J, Lauretti E, Pratico D. Caspase-3-dependent cleavage of Akt modulates tau phosphorylation via GSK3beta kinase: implications for Alzheimer’s disease. Mol Psychiatry. 2017; https://doi.org/10.1038/mp.2016.214.
Konietzny A, Bar J, Mikhaylova M. Dendritic actin cytoskeleton: structure, functions, and regulations. Front Cell Neurosci. 2017;11:147. https://doi.org/10.3389/fncel.2017.00147.
Islam BU, Tabrez S. Management of Alzheimer’s disease—an insight of the enzymatic and other novel potential targets. Int J Biol Macromol. 2017;97:700–9. https://doi.org/10.1016/j.ijbiomac.2017.01.076.
Goedert M, Spillantini MG. Propagation of tau aggregates. Mol Brain. 2017;10(1):18. https://doi.org/10.1186/s13041-017-0298-7.
Castillo-Carranza DL, Nilson AN, Van Skike CE, Jahrling JB, Patel K, Garach P, et al. Cerebral microvascular accumulation of tau oligomers in Alzheimer’s disease and related tauopathies. Aging Dis. 2017;8(3):257–66. 10.14336/AD.2017.0112.
Kolarova M, Sengupta U, Bartos A, Ricny J, Kayed R. Tau oligomers in sera of patients with Alzheimer’s disease and aged controls. J Alzheimers Dis. 2017;58(2):471–8. https://doi.org/10.3233/JAD-170048.
Nicolakakis N, Hamel E. Neurovascular function in Alzheimer’s disease patients and experimental models. J Cereb Blood Flow Metab. 2011;31(6):1354–70. https://doi.org/10.1038/jcbfm.2011.43.
Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer’s disease. J Neurosci Res. 2017;95(4):943–72. https://doi.org/10.1002/jnr.23777.
Vijayan M, Reddy PH. Stroke, vascular dementia, and Alzheimer’s disease: molecular links. J Alzheimers Dis. 2016;54(2):427–43. https://doi.org/10.3233/JAD-160527.
Kalaria RN. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta Neuropathol. 2016;131(5):659–85. https://doi.org/10.1007/s00401-016-1571-z.
Zhou J, Yu JT, Wang HF, Meng XF, Tan CC, Wang J, et al. Association between stroke and Alzheimer’s disease: systematic review and meta-analysis. J Alzheimers Dis. 2015;43(2):479–89. https://doi.org/10.3233/JAD-140666.
Tosto G, Bird TD, Bennett DA, Boeve BF, Brickman AM, Cruchaga C, et al. The role of cardiovascular risk factors and stroke in familial Alzheimer disease. JAMA Neurol. 2016;73(10):1231–7. https://doi.org/10.1001/jamaneurol.2016.2539.
Chi NF, Chien LN, Ku HL, Hu CJ, Chiou HY. Alzheimer disease and risk of stroke: a population-based cohort study. Neurology. 2013;80(8):705–11. https://doi.org/10.1212/WNL.0b013e31828250af.
Liu H, Zhang J. Cerebral hypoperfusion and cognitive impairment: the pathogenic role of vascular oxidative stress. Int J Neurosci. 2012;122(9):494–9. https://doi.org/10.3109/00207454.2012.686543.
Lucke-Wold BP, Turner RC, Logsdon AF, Simpkins JW, Alkon DL, Smith KE, et al. Common mechanisms of Alzheimer’s disease and ischemic stroke: the role of protein kinase C in the progression of age-related neurodegeneration. J Alzheimers Dis. 2015;43(3):711–24. https://doi.org/10.3233/JAD-141422.
Janssen B, Vugts DJ, Funke U, Molenaar GT, Kruijer PS, van Berckel BN, et al. Imaging of neuroinflammation in Alzheimer’s disease, multiple sclerosis and stroke: recent developments in positron emission tomography. Biochim Biophys Acta. 2016;1862(3):425–41. https://doi.org/10.1016/j.bbadis.2015.11.011.
Xiong XY, Liu L, Yang QW. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol. 2016;142:23–44. https://doi.org/10.1016/j.pneurobio.2016.05.001.
Minter MR, Taylor JM, Crack PJ. The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. J Neurochem. 2016;136(3):457–74. https://doi.org/10.1111/jnc.13411.
Minogue AM. Role of infiltrating monocytes/macrophages in acute and chronic neuroinflammation: effects on cognition, learning and affective behaviour. Prog Neuropsychopharmacol Biol Psychiatry. 2017;79(Pt A):15–8. https://doi.org/10.1016/j.pnpbp.2017.02.008.
Mracsko E, Veltkamp R. Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci. 2014;8:388. https://doi.org/10.3389/fncel.2014.00388.
Bagyinszky E, Giau VV, Shim K, Suk K, An SSA, Kim S. Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. J Neurol Sci. 2017;376:242–54. https://doi.org/10.1016/j.jns.2017.03.031.
Ramberg V, Tracy LM, Samuelsson M, Nilsson LN, Iverfeldt K. The CCAAT/enhancer binding protein (C/EBP) delta is differently regulated by fibrillar and oligomeric forms of the Alzheimer amyloid-beta peptide. J Neuroinflammation. 2011;8:34. https://doi.org/10.1186/1742-2094-8-34.
McNaull BB, Todd S, McGuinness B, Passmore AP. Inflammation and anti-inflammatory strategies for Alzheimer’s disease—a mini-review. Gerontology. 2010;56(1):3–14. https://doi.org/10.1159/000237873.
Wulker N, Zwipp H, Tscherne H. Experimental study of the classification of intra-articular calcaneus fractures. Unfallchirurg. 1991;94(4):198–203.
Rawji KS, Mishra MK, Michaels NJ, Rivest S, Stys PK, Yong VW. Immunosenescence of microglia and macrophages: impact on the ageing central nervous system. Brain. 2016;139(Pt 3):653–61. https://doi.org/10.1093/brain/awv395.
Li W, Tong HI, Gorantla S, Poluektova LY, Gendelman HE, Lu Y. Neuropharmacologic approaches to restore the brain’s microenvironment. J NeuroImmune Pharmacol. 2016;11(3):484–94. https://doi.org/10.1007/s11481-016-9686-5.
Norden DM, Muccigrosso MM, Godbout JP. Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology. 2015;96(Pt A):29–41. https://doi.org/10.1016/j.neuropharm.2014.10.028.
Alonso E, Vieira AC, Rodriguez I, Alvarino R, Gegunde S, Fuwa H, et al. Tetracyclic truncated analogue of the marine toxin gambierol modifies NMDA, tau, and amyloid beta expression in mice brains: implications in AD pathology. ACS Chem Neurosci. 2017; https://doi.org/10.1021/acschemneuro.7b00012.
Kim HA, Miller AA, Drummond GR, Thrift AG, Arumugam TV, Phan TG, et al. Vascular cognitive impairment and Alzheimer’s disease: role of cerebral hypoperfusion and oxidative stress. Naunyn Schmiedeberg’s Arch Pharmacol. 2012;385(10):953–9. https://doi.org/10.1007/s00210-012-0790-7.
Sun YY, Li Y, Wali B, Li Y, Lee J, Heinmiller A, et al. Prophylactic edaravone prevents transient hypoxic-ischemic brain injury: implications for perioperative neuroprotection. Stroke. 2015;46(7):1947–55. https://doi.org/10.1161/STROKEAHA.115.009162.
Li H, Wang J, Wang P, Rao Y, Chen L. Resveratrol reverses the synaptic plasticity deficits in a chronic cerebral hypoperfusion rat model. J Stroke Cerebrovasc Dis. 2016;25(1):122–8. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.09.004.
Dam K, Fuchtemeier M, Farr TD, Boehm-Sturm P, Foddis M, Dirnagl U, et al. Increased homocysteine levels impair reference memory and reduce cortical levels of acetylcholine in a mouse model of vascular cognitive impairment. Behav Brain Res. 2017;321:201–8. https://doi.org/10.1016/j.bbr.2016.12.041.
Zou W, Song Y, Li Y, Du Y, Zhang X, Fu J. The role of autophagy in the correlation between neuron damage and cognitive impairment in rat chronic cerebral hypoperfusion. Mol Neurobiol. 2017; https://doi.org/10.1007/s12035-016-0351-z.
Wang D, Lin Q, Su S, Liu K, Wu Y, Hai J. URB597 improves cognitive impairment induced by chronic cerebral hypoperfusion by inhibiting mTOR-dependent autophagy. Neuroscience. 2017;344:293–304. https://doi.org/10.1016/j.neuroscience.2016.12.034.
Ong CT, Wong YS, Wu CS, Su YH. Outcome of stroke patients receiving different doses of recombinant tissue plasminogen activator. Drug Des Devel Ther. 2017;11:1559–66. https://doi.org/10.2147/DDDT.S133759.
Li X, Ling L, Li C, Ma Q. Efficacy and safety of desmoteplase in acute ischemic stroke patients: a systematic review and meta-analysis. Medicine (Baltimore). 2017;96(18):e6667. https://doi.org/10.1097/MD.0000000000006667.
Abushouk AI, Elmaraezy A, Aglan A, Salama R, Fouda S, Fouda R, et al. Bapineuzumab for mild to moderate Alzheimer’s disease: a meta-analysis of randomized controlled trials. BMC Neurol. 2017;17(1):66. https://doi.org/10.1186/s12883-017-0850-1.
Farina N, Llewellyn D, Isaac MG, Tabet N. Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane Database Syst Rev. 2017;1:CD002854. https://doi.org/10.1002/14651858.CD002854.pub4.
Chau S, Herrmann N, Ruthirakuhan MT, Chen JJ, Lanctot KL. Latrepirdine for Alzheimer’s disease. Cochrane Database Syst Rev. 2015;4:CD009524. https://doi.org/10.1002/14651858.CD009524.pub2.
Funding
This study was funded by the Chinese National Natural Science Foundation (No. 81402930, S.D.), the NIH grants (R01 NS38118, R01 NS48216), and the VA grant I01BX002891 (D.S.).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
Shuying Dong, Shelly Maniar, Mioara D. Manole, and Dandan Sun declare that they have no conflicts of interest to disclose.
Ethical Approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Rights and permissions
About this article
Cite this article
Dong, S., Maniar, S., Manole, M.D. et al. Cerebral Hypoperfusion and Other Shared Brain Pathologies in Ischemic Stroke and Alzheimer’s Disease. Transl. Stroke Res. 9, 238–250 (2018). https://doi.org/10.1007/s12975-017-0570-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12975-017-0570-2