Advertisement

Translational Stroke Research

, Volume 8, Issue 5, pp 405–423 | Cite as

Emerging Roles of Sirtuins in Ischemic Stroke

  • David T. She
  • Dong-Gyu Jo
  • Thiruma V. ArumugamEmail author
Review

Abstract

Ischemic stroke is one of the leading causes of death worldwide. It is characterized by a sudden disruption of blood flow to the brain causing cell death and damage, which will lead to neurological impairments. In the current state, only one drug is approved to be used in clinical setting and new therapies that confer ischemic neuroprotection are desperately needed. Several targets and pathways have been indicated to be neuroprotective in ischemic stroke, among which the sirtuin family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases has emerged as important modulators of several processes in the normal physiology and pathological conditions such as stroke. Recent studies have identified some members of the sirtuin family are able to ameliorate the devastating consequences of ischemic stroke by conferring neuroprotection by means of reducing neuronal cell death, oxidative stress, and neuroinflammation whereas some sirtuins are found to be detrimental in the pathophysiology of ischemic stroke. This review summarizes implications of sirtuins in ischemic stroke and the experimental evidences that demonstrate the potential of sirtuin modulators as neuroprotective therapy for ischemic stroke.

Keywords

Sirtuins Ischemic stroke Cell death Neuroprotection Inflammation 

Notes

Acknowledgements

This work was supported by the National Medical Research Council Research Grant (NMRC/CBRG/0102/2016), National University Health System Seed Fund for Basic Science Research (R-185-000-255-112), and Singapore Ministry of Education Academic Research Fund Tier 1 Grant (R-185-000-285-112) to TVA and Swee Liew Wadsworth Concept Grant (Research) to DTS. DTS is a recipient of National University of Singapore Research Scholarship.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun. 1999;260(1):273–9. doi: 10.1006/bbrc.1999.0897.PubMedCrossRefGoogle Scholar
  2. 2.
    Brachmann CB, Sherman JM, Devine SE, Cameron EE, Pillus L, Boeke JD. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 1995;9(23):2888–902. doi: 10.1101/gad.9.23.2888.PubMedCrossRefGoogle Scholar
  3. 3.
    Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403(6771):795–800. doi: 10.1038/35001622.PubMedCrossRefGoogle Scholar
  4. 4.
    Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A. 2000;97(11):5807–11. doi: 10.1073/pnas.110148297.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 2000;273(2):793–8. doi: 10.1006/bbrc.2000.3000.PubMedCrossRefGoogle Scholar
  6. 6.
    North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+−dependent tubulin deacetylase. Mol Cell. 2003;11(2):437–44.PubMedCrossRefGoogle Scholar
  7. 7.
    Jin Q, Yan T, Ge X, Sun C, Shi X, Zhai Q. Cytoplasm-localized SIRT1 enhances apoptosis. J Cell Physiol. 2007;213(1):88–97. doi: 10.1002/jcp.21091.PubMedCrossRefGoogle Scholar
  8. 8.
    North BJ, Verdin E. Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS One. 2007;2(8):e784. doi: 10.1371/journal.pone.0000784.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 2005;16(10):4623–35. doi: 10.1091/mbc.E05-01-0033.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Yamakuchi M, Lowenstein CJ. MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle. 2009;8(5):712–5. doi: 10.4161/cc.8.5.7753.PubMedCrossRefGoogle Scholar
  11. 11.
    Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science. 2004;306(5704):2105–8. doi: 10.1126/science.1101731.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell. 2005;123(3):437–48. doi: 10.1016/j.cell.2005.08.011.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang F, Nguyen M, Qin FX-F, Tong Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell. 2007;6(4):505–14. doi: 10.1111/j.1474-9726.2007.00304.x.PubMedCrossRefGoogle Scholar
  14. 14.
    Kobayashi Y, Furukawa-Hibi Y, Chen C, Horio Y, Isobe K, Ikeda K, et al. SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. Int J Mol Med. 2005;16(2):237–43.PubMedGoogle Scholar
  15. 15.
    Qiao L, Shao J. SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J Biol Chem. 2006;281(52):39915–24. doi: 10.1074/jbc.M607215200.PubMedCrossRefGoogle Scholar
  16. 16.
    Jing E, Gesta S, Kahn CR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 2007;6(2):105–14. doi: 10.1016/j.cmet.2007.07.003.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434(7029):113–8. doi: 10.1038/nature03354.PubMedCrossRefGoogle Scholar
  18. 18.
    Krishnan J, Danzer C, Simka T, Ukropec J, Walter KM, Kumpf S, et al. Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes Dev. 2012;26(3):259–70. doi: 10.1101/gad.180406.111.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Oellerich MF, Potente M. FOXOs and sirtuins in vascular growth, maintenance, and aging. Circ Res. 2012;110(9):1238–51. doi: 10.1161/CIRCRESAHA.111.246488.PubMedCrossRefGoogle Scholar
  20. 20.
    Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with Histone H1 and promotes formation of facultative heterochromatin. Mol Cell Elsevier. 2004;16(1):93–105. doi: 10.1016/j.molcel.2004.08.031.CrossRefGoogle Scholar
  21. 21.
    Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature. 2009;459(7248):802–7. doi: 10.1038/nature08085.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell. Elsevier. 2001;107(2):137–48. doi: 10.1016/S0092-8674(01)00524-4.Google Scholar
  23. 23.
    Vaziri H, Dessain SK, Eaton EN, Imai S-I, Frye RA, Pandita TK, et al. hSIR2 SIRT1 functions as an NAD-dependent p53 Deacetylase. Cell Elsevier. 2001;107(2):149–59. doi: 10.1016/S0092-8674(01)00527-X.Google Scholar
  24. 24.
    Leker RR, Aharonowiz M, Greig NH, Ovadia H. The role of p53-induced apoptosis in cerebral ischemia: effects of the p53 inhibitor pifithrin alpha. Exp Neurol. 2004;187(2):478–86. doi: 10.1016/j.expneurol.2004.01.030.PubMedCrossRefGoogle Scholar
  25. 25.
    Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303(5666):2011–5. doi: 10.1126/science.1094637.PubMedCrossRefGoogle Scholar
  26. 26.
    van der Horst A, Tertoolen LGJ, de Vries-Smits LMM, Frye RA, Medema RH, Burgering BMT. FOXO4 is acetylated upon peroxide stress and Deacetylated by the longevity protein hSir2SIRT1. J Biol Chem. 2004;279(28):28873–9. doi: 10.1074/jbc.M401138200.PubMedCrossRefGoogle Scholar
  27. 27.
    Santo EE, Stroeken P, Sluis PV, Koster J, Versteeg R, Westerhout EM. FOXO3a is a major target of inactivation by PI3K/AKT signaling in aggressive neuroblastoma. Cancer Res. 2013;73(7):2189–98. doi: 10.1158/0008-5472.CAN-12-3767.PubMedCrossRefGoogle Scholar
  28. 28.
    Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005;24(50):7410–25. doi: 10.1038/sj.onc.1209086.PubMedCrossRefGoogle Scholar
  29. 29.
    Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia. 2003;17(3):590–603. doi: 10.1038/sj.leu.2402824.PubMedCrossRefGoogle Scholar
  30. 30.
    Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116(4):551–63.PubMedCrossRefGoogle Scholar
  31. 31.
    Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24(1):78–90. doi: 10.1210/er.2002-0012.PubMedCrossRefGoogle Scholar
  32. 32.
    St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006;127(2):397–408. doi: 10.1016/j.cell.2006.09.024.PubMedCrossRefGoogle Scholar
  33. 33.
    Srivastava S, Haigis MC. Role of sirtuins and calorie restriction in neuroprotection: implications in Alzheimer’s and Parkinson’s diseases. Curr Pharm Des. 2011;17(31):3418–33. doi: 10.2174/138161211798072526.PubMedCrossRefGoogle Scholar
  34. 34.
    Jin J, Iakova P, Jiang Y, Medrano EE, Timchenko NA. The reduction of SIRT1 in livers of old mice leads to impaired body homeostasis and to inhibition of liver proliferation. Hepatology. 2011;54(3):989–98. doi: 10.1002/hep.24471.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Yang Y, Duan W, Li Y, Jin Z, Yan J, Yu S, et al. Novel role of silent information regulator 1 in myocardial ischemia. Circulation. 2013;128(20):2232–40. doi: 10.1161/CIRCULATIONAHA.113.002480.PubMedCrossRefGoogle Scholar
  36. 36.
    Perrod S, Cockell MM, Laroche T, Renauld H, Ducrest A-L, Bonnard C, et al. A cytosolic NAD-dependent deacetylase, Hst2p, can modulate nucleolar and telomeric silencing in yeast. EMBO J Oxford, UK: Oxford University Press. 2001;20(1–2):197–209. doi: 10.1093/emboj/20.1.197.CrossRefGoogle Scholar
  37. 37.
    Vaquero A, Scher MB, Lee DH, Sutton A, Cheng H-L, Alt FW, et al. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 2006;20(10):1256–61. doi: 10.1101/gad.1412706.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    de Oliveira RM, Sarkander J, Kazantsev AG, Outeiro TF. SIRT2 as a therapeutic target for age-related disorders. Front Pharmacol. 2012;3:82. doi: 10.3389/fphar.2012.00082.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Beirowski B, Gustin J, Armour SM, Yamamoto H, Viader A, North BJ, et al. Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein par-3/atypical protein kinase C (aPKC) signaling. Proc Natl Acad Sci U S A. 2011;108(43):E952–61. doi: 10.1073/pnas.1104969108.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Jiang W, Wang S, Xiao M, Lin Y, Zhou L, Lei Q, et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell. 2011;43(1):33–44. doi: 10.1016/j.molcel.2011.04.028.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hiratsuka M, Inoue T, Toda T, Kimura N, Shirayoshi Y, Kamitani H, et al. Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem Biophys Res Commun. 2003;309(3):558–66. doi: 10.1016/j.bbrc.2003.08.029.PubMedCrossRefGoogle Scholar
  42. 42.
    Lennerz V, Fatho M, Gentilini C, Frye RA, Lifke A, Ferel D, et al. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci U S A. 2005;102(44):16013–8. doi: 10.1073/pnas.0500090102.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kim H-S, Vassilopoulos A, Wang R-H, Lahusen T, Xiao Z, Xu X, et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell. 2011;20(4):487–99. doi: 10.1016/j.ccr.2011.09.004.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Dan L, Klimenkova O, Klimiankou M, Klusman JH, van den Heuvel-Eibrink MM, Reinhardt D, et al. The role of sirtuin 2 activation by nicotinamide phosphoribosyltransferase in the aberrant proliferation and survival of myeloid leukemia cells. Haematologica. 2012;97(4):551–9. doi: 10.3324/haematol.2011.055236.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Xie XQ, Zhang P, Tian B, Chen XQ. Downregulation of NAD-dependent Deacetylase SIRT2 protects mouse brain against ischemic stroke. Mol Neurobiol. 2016; doi: 10.1007/s12035-016-0173-z.
  46. 46.
    Krey L, Lühder F, Kusch K, Czech-Zechmeister B, Könnecke B, Fleming Outeiro T, et al. Knockout of silent information regulator 2 (SIRT2) preserves neurological function after experimental stroke in mice. J Cereb Blood Flow Metab. 2015;35(12):2080–8. doi: 10.1038/jcbfm.2015.178.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci U S A. 2006;103(27):10230–5. doi: 10.1073/pnas.0604392103.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature. 2010;464(7285):121–5. doi: 10.1038/nature08778.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CFW, Steegborn C. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol. 2008;382(3):790–801. doi: 10.1016/j.jmb.2008.07.048.PubMedCrossRefGoogle Scholar
  50. 50.
    Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B, Lombard DB, et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 2010;12(6):654–61. doi: 10.1016/j.cmet.2010.11.003.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Qiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010;12(6):662–7. doi: 10.1016/j.cmet.2010.11.015.PubMedCrossRefGoogle Scholar
  52. 52.
    Yu W, Dittenhafer-Reed KE, Denu JM. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J Biol Chem. 2012;287(17):14078–86. doi: 10.1074/jbc.M112.355206.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Hafner AV, Dai J, Gomes AP, Xiao C-Y, Palmeira CM, Rosenzweig A, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY). 2010;2(12):914–23. doi: 10.18632/aging.100252.CrossRefGoogle Scholar
  54. 54.
    Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell. 2006;126(5):941–54. doi: 10.1016/j.cell.2006.06.057.PubMedCrossRefGoogle Scholar
  55. 55.
    Jeong SM, Xiao C, Finley LWS, Lahusen T, Souza AL, Pierce K, et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell. 2013;23(4):450–63. doi: 10.1016/j.ccr.2013.02.024.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Laurent G, de Boer VCJ, Finley LWS, Sweeney M, Lu H, Schug TT, et al. SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation. Mol Cell Biol. 2013;33(22):4552–61. doi: 10.1128/MCB.00087-13.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Nasrin N, Wu X, Fortier E, Feng Y. Bare’ OC, Chen S, et al. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J Biol Chem. 2010;285(42):31995–2002. doi: 10.1074/jbc.M110.124164.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Laurent G, German NJ, Saha AK, de Boer VCJ, Davies M, Koves TR, et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell. 2013;50(5):686–98. doi: 10.1016/j.molcel.2013.05.012.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Tao Y, Huang C, Huang Y, Hong L, Wang H, Zhou Z, et al. SIRT4 suppresses inflammatory responses in human umbilical vein endothelial cells. Cardiovasc Toxicol. 2015;15(3):217–23. doi: 10.1007/s12012-014-9287-6.PubMedCrossRefGoogle Scholar
  60. 60.
    Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, et al. Sirt5 is a NAD-dependent protein lysine Demalonylase and Desuccinylase. Science. 2011;334(6057):806–9. doi: 10.1126/science.1207861.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics. 2011;10(12):M111.012658. doi: 10.1074/mcp.M111.012658.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell. 2009;137(3):560–70. doi: 10.1016/j.cell.2009.02.026.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell. 2013;50(6):919–30. doi: 10.1016/j.molcel.2013.06.001.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Liang F, Wang X, Ow SH, Chen W, Ong WC. Sirtuin 5 is anti-apoptotic and anti-oxidative in cultured SH-EP Neuroblastoma cells. Neurotox Res. 2016; doi: 10.1007/s12640-016-9664-y.
  65. 65.
    Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 2015;11(2):253–70. doi: 10.1080/15548627.2015.1009778.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Guedouari H, Daigle T, Scorrano L, Hebert-Chatelain E. Sirtuin 5 protects mitochondria from fragmentation and degradation during starvation. Biochim. Biophys. Acta - Mol. Cell Res. 2017;1864(1):169–76. doi: 10.1016/j.bbamcr.2016.10.015.Google Scholar
  67. 67.
    Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature. 2008;452(7186):492–6. doi: 10.1038/nature06736.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Michishita E, McCord RA, Boxer LD, Barber MF, Hong T, Gozani O, et al. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle. 2009;8(16):2664–6. doi: 10.4161/cc.8.16.9367.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124(2):315–29. doi: 10.1016/j.cell.2005.11.044.PubMedCrossRefGoogle Scholar
  70. 70.
    McCord RA, Michishita E, Hong T, Berber E, Boxer LD, Kusumoto R, et al. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY). 2009;1(1):109–21. doi: 10.18632/aging.100011.CrossRefGoogle Scholar
  71. 71.
    Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 2011;332(6036):1443–6. doi: 10.1126/science.1202723.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012;483(7388):218–21. doi: 10.1038/nature10815.PubMedCrossRefGoogle Scholar
  73. 73.
    Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006;20(9):1075–80. doi: 10.1101/gad.1399706.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res. 2008;102(6):703–10. doi: 10.1161/CIRCRESAHA.107.164558.PubMedCrossRefGoogle Scholar
  75. 75.
    Tsai Y-C, Greco TM, Boonmee A, Miteva Y, Cristea IM. Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Mol Cell Proteomics. 2012;11(5):60–76. doi: 10.1074/mcp.A111.015156.PubMedCrossRefGoogle Scholar
  76. 76.
    Barber MF, Michishita E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature. 2012;487(7405):114–8. doi: 10.1038/nature11043.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Sidorova-Darmos E, Wither RG, Shulyakova N, Fisher C, Ratnam M, Aarts M, et al. Differential expression of sirtuin family members in the developing, adult, and aged rat brain. Front Aging Neurosci. 2014;6:333. doi: 10.3389/fnagi.2014.00333.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Sakamoto J, Miura T, Shimamoto K, Horio Y. Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett. 2004;556(1–3):281–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Hisahara S, Chiba S, Matsumoto H, Tanno M, Yagi H, Shimohama S, et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci U S A. 2008;105(40):15599–604. doi: 10.1073/pnas.0800612105.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Ramadori G, Lee CE, Bookout AL, Lee S, Williams KW, Anderson J, et al. Brain SIRT1: anatomical distribution and regulation by energy availability. J Neurosci. 2008;28(40):9989–96. doi: 10.1523/JNEUROSCI.3257-08.2008.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Prozorovski T, Schulze-Topphoff U, Glumm R, Baumgart J, Schröter F, Ninnemann O, et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol. 2008;10(4):385–94. doi: 10.1038/ncb1700.PubMedCrossRefGoogle Scholar
  82. 82.
    Chen J, Zhou Y, Mueller-Steiner S, Chen L-F, Kwon H, Yi S, et al. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem. 2005;280(48):40364–74. doi: 10.1074/jbc.M509329200.PubMedCrossRefGoogle Scholar
  83. 83.
    Körner S, Böselt S, Thau N, Rath KJ, Dengler R, Petri S. Differential sirtuin expression patterns in amyotrophic lateral sclerosis (ALS) postmortem tissue: neuroprotective or neurotoxic properties of sirtuins in ALS? Neurodegener Dis. 2013;11(3):141–52. doi: 10.1159/000338048.PubMedCrossRefGoogle Scholar
  84. 84.
    Park HR, Kong KH, Yu BP, Mattson MP, Lee J. Resveratrol inhibits the proliferation of neural progenitor cells and hippocampal neurogenesis. J Biol Chem. 2012;287(51):42588–600. doi: 10.1074/jbc.M112.406413.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Ma C-Y, Yao M, Zhai Q, Jiao J, Yuan X, Poo M. SIRT1 suppresses self-renewal of adult hippocampal neural stem cells. Development. 2014;141(24):4697–709. doi: 10.1242/dev.117937.PubMedCrossRefGoogle Scholar
  86. 86.
    Michán S, Li Y, Chou MM-H, Parrella E, Ge H, Long JM, et al. SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci. 2010;30(29):9695–707. doi: 10.1523/JNEUROSCI.0027-10.2010.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Gao J, Wang W-Y, Mao Y-W, Gräff J, Guan J-S, Pan L, et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature. 2010;466(7310):1105–9. doi: 10.1038/nature09271.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Maxwell MM, Tomkinson EM, Nobles J, Wizeman JW, Amore AM, Quinti L, et al. The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS. Hum Mol Genet. 2011;20(20):3986–96. doi: 10.1093/hmg/ddr326.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Braidy N, Poljak A, Grant R, Jayasena T, Mansour H, Chan-Ling T, et al. Differential expression of sirtuins in the aging rat brain. Front Cell Neurosci. 2015;9:167. doi: 10.3389/fncel.2015.00167.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Oh CS, Lee E, Lee YS, Shin DH. SIRT2 protein expression in normal and aged rat brain. J Korean Geriatr Soc. 2012;16(1):27. doi: 10.4235/jkgs.2012.16.1.27.CrossRefGoogle Scholar
  91. 91.
    Suzuki K, Koike T. Resveratrol abolishes resistance to axonal degeneration in slow Wallerian degeneration (WldS) mice: activation of SIRT2, an NAD-dependent tubulin deacetylase. Biochem Biophys Res Commun. 2007;359(3):665–71. doi: 10.1016/j.bbrc.2007.05.164.PubMedCrossRefGoogle Scholar
  92. 92.
    Creppe C, Malinouskaya L, Volvert M-L, Gillard M, Close P, Malaise O, et al. Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin. Cell. 2009;136(3):551–64. doi: 10.1016/j.cell.2008.11.043.PubMedCrossRefGoogle Scholar
  93. 93.
    Ferreira A, Cáceres A. The expression of acetylated microtubules during axonal and dendritic growth in cerebellar macroneurons which develop in vitro. Brain Res Dev Brain Res. 1989;49(2):205–13.PubMedCrossRefGoogle Scholar
  94. 94.
    Taylor DM, Balabadra U, Xiang Z, Woodman B, Meade S, Amore A, et al. A brain-permeable small molecule reduces neuronal cholesterol by inhibiting activity of sirtuin 2 deacetylase. ACS Chem Biol. 2011;6(6):540–6. doi: 10.1021/cb100376q.PubMedCrossRefGoogle Scholar
  95. 95.
    Pais TF, Szegő ÉM, Marques O, Miller-Fleming L, Antas P, Guerreiro P, et al. The NAD-dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation. EMBO J. 2013;32(19):2603–16. doi: 10.1038/emboj.2013.200.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Zeng L, Yang Y, Hu Y, Sun Y, Du Z, Xie Z, et al. Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model. PLoS One. 2014;9(2):e88019. doi: 10.1371/journal.pone.0088019.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Di Loreto S, Falone S, D’Alessandro A, Santini S, Sebastiani P, Cacchio M, et al. Regular and moderate exercise initiated in middle age prevents age-related amyloidogenesis and preserves synaptic and neuroprotective signaling in mouse brain cortex. Exp Gerontol. 2014;57:57–65. doi: 10.1016/j.exger.2014.05.006.PubMedCrossRefGoogle Scholar
  98. 98.
    Song W, Song Y, Kincaid B, Bossy B, Bossy-Wetzel E. Mutant SOD1G93A triggers mitochondrial fragmentation in spinal cord motor neurons: neuroprotection by SIRT3 and PGC-1α. Neurobiol Dis. 2013;51:72–81. doi: 10.1016/j.nbd.2012.07.004.PubMedCrossRefGoogle Scholar
  99. 99.
    Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell. 2010;143(5):802–12. doi: 10.1016/j.cell.2010.10.002.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Cheng A, Yang Y, Zhou Y, Maharana C, Lu D, Peng W, et al. Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges. Cell Metab. 2016;23(1):128–42. doi: 10.1016/j.cmet.2015.10.013.PubMedCrossRefGoogle Scholar
  101. 101.
    Komlos D, Mann KD, Zhuo Y, Ricupero CL, Hart RP, Liu AY-C, et al. Glutamate dehydrogenase 1 and SIRT4 regulate glial development. Glia. 2013;61(3):394–408. doi: 10.1002/glia.22442.PubMedCrossRefGoogle Scholar
  102. 102.
    Rardin MJ, He W, Nishida Y, Newman JC, Carrico C, Danielson SR, et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 2013;18(6):920–33. doi: 10.1016/j.cmet.2013.11.013.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Favero G, Rezzani R, Rodella LF. Sirtuin 6 nuclear localization at cortical brain level of young diabetic mice: an immunohistochemical study. Acta Histochem. 2014;116(1):272–7. doi: 10.1016/j.acthis.2013.08.006.PubMedCrossRefGoogle Scholar
  104. 104.
    Schwer B, Schumacher B, Lombard DB, Xiao C, Kurtev MV, Gao J, et al. Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. Proc Natl Acad Sci U S A. 2010;107(50):21790–4. doi: 10.1073/pnas.1016306107.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet (London, England). 2012;380(9859):2095–128. doi: 10.1016/S0140-6736(12)61728-0.CrossRefGoogle Scholar
  106. 106.
    Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology. 2008;55(3):310–8. doi: 10.1016/j.neuropharm.2008.01.005.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Bansal S, Sangha KS, Khatri P. Drug treatment of acute ischemic stroke. Am J Cardiovasc Drugs. 2013;13(1):57–69. doi: 10.1007/s40256-013-0007-6.PubMedCrossRefGoogle Scholar
  108. 108.
    Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79(4):1431–568.PubMedGoogle Scholar
  109. 109.
    Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67(2):181–98. doi: 10.1016/j.neuron.2010.07.002.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Hernández-Jiménez M, Hurtado O, Cuartero MI, Ballesteros I, Moraga A, Pradillo JM, et al. Silent information regulator 1 protects the brain against cerebral ischemic damage. Stroke. 2013;44(8):2333–7. doi: 10.1161/STROKEAHA.113.001715.PubMedCrossRefGoogle Scholar
  111. 111.
    Hattori Y, Okamoto Y, Maki T, Yamamoto Y, Oishi N, Yamahara K, et al. Silent information regulator 2 homolog 1 counters cerebral hypoperfusion injury by deacetylating endothelial nitric oxide synthase. Stroke. 2014;45(11):3403–11. doi: 10.1161/STROKEAHA.114.006265.PubMedCrossRefGoogle Scholar
  112. 112.
    Hattori Y, Okamoto Y, Nagatsuka K, Takahashi R, Kalaria RN, Kinoshita M, et al. SIRT1 attenuates severe ischemic damage by preserving cerebral blood flow. Neuroreport. 2015;26(3):113–7. doi: 10.1097/WNR.0000000000000308.PubMedCrossRefGoogle Scholar
  113. 113.
    Wang T, Gu J, Wu P-F, Wang F, Xiong Z, Yang Y-J, et al. Protection by tetrahydroxystilbene glucoside against cerebral ischemia: involvement of JNK, SIRT1, and NF-kappaB pathways and inhibition of intracellular ROS/RNS generation. Free Radic Biol Med. 2009;47(3):229–40. doi: 10.1016/j.freeradbiomed.2009.02.027.PubMedCrossRefGoogle Scholar
  114. 114.
    Fu B, Zhang J, Zhang X, Zhang C, Li Y, Zhang Y, et al. Alpha-lipoic acid upregulates SIRT1-dependent PGC-1α expression and protects mouse brain against focal ischemia. Neuroscience. 2014;281:251–7. doi: 10.1016/j.neuroscience.2014.09.058.PubMedCrossRefGoogle Scholar
  115. 115.
    Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD, et al. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science. 2009;324(5932):1289–93. doi: 10.1126/science.1169956.PubMedCrossRefGoogle Scholar
  116. 116.
    Lim J-H, Lee Y-M, Chun Y-S, Chen J, Kim J-E, Park J-W. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell. 2010;38(6):864–78. doi: 10.1016/j.molcel.2010.05.023.PubMedCrossRefGoogle Scholar
  117. 117.
    Wang P, Xu T-Y, Guan Y-F, Tian W-W, Viollet B, Rui Y-C, et al. Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway. Ann Neurol. 2011;69(2):360–74. doi: 10.1002/ana.22236.PubMedCrossRefGoogle Scholar
  118. 118.
    Hu Q, Manaenko A, Bian H, Guo Z, Huang J-L, Guo Z-N, et al. Hyperbaric oxygen reduces infarction volume and hemorrhagic transformation through ATP/NAD(+)/Sirt1 pathway in Hyperglycemic middle cerebral artery occlusion rats. Stroke. 2017; doi: 10.1161/STROKEAHA.116.015753.
  119. 119.
    Guo J-M, Shu H, Wang L, Xu J-J, Niu X-C, Zhang L. SIRT1-dependent AMPK pathway in the protection of estrogen against ischemic brain injury. CNS Neurosci. Ther. 2017;23(4):360–9. doi: 10.1111/cns.12686.PubMedCrossRefGoogle Scholar
  120. 120.
    Nie H, Hong Y, Lu X, Zhang J, Chen H, Li Y, et al. SIRT2 mediates oxidative stress-induced apoptosis of differentiated PC12 cells. Neuroreport. 2014; doi: 10.1097/WNR.0000000000000192.
  121. 121.
    Wang Q, Li L, Li CY, Pei Z, Zhou M, Li N. SIRT3 protects cells from hypoxia via PGC-1α- and MnSOD-dependent pathways. Neuroscience. 2015;286:109–21. doi: 10.1016/j.neuroscience.2014.11.045.PubMedCrossRefGoogle Scholar
  122. 122.
    Yin J, Han P, Tang Z, Liu Q, Shi J. Sirtuin 3 mediates neuroprotection of ketones against ischemic stroke. J Cereb Blood Flow Metab. 2015;35(11):1783–9. doi: 10.1038/jcbfm.2015.123.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Jacobs KM, Pennington JD, Bisht KS, Aykin-Burns N, Kim H-S, Mishra M, et al. SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int J Biol Sci. 2008;4(5):291–9. doi: 10.7150/ijbs.4.291.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Peserico A, Chiacchiera F, Grossi V, Matrone A, Latorre D, Simonatto M, et al. A novel AMPK-dependent FoxO3A-SIRT3 intramitochondrial complex sensing glucose levels. Cell Mol Life Sci. 2013;70(11):2015–29. doi: 10.1007/s00018-012-1244-6.PubMedCrossRefGoogle Scholar
  125. 125.
    Novgorodov SA, Riley CL, Keffler JA, Yu J, Kindy MS, Macklin WB, et al. SIRT3 Deacetylates Ceramide Synthases: IMPLICATIONS FOR MITOCHONDRIAL DYSFUNCTION AND BRAIN INJURY. J Biol Chem. 2016;291(4):1957–73. doi: 10.1074/jbc.M115.668228.PubMedCrossRefGoogle Scholar
  126. 126.
    Shih J, Liu L, Mason A, Higashimori H, Donmez G. Loss of SIRT4 decreases GLT-1-dependent glutamate uptake and increases sensitivity to kainic acid. J Neurochem. 2014;131(5):573–81. doi: 10.1111/jnc.12942.PubMedCrossRefGoogle Scholar
  127. 127.
    Chu K, Lee S-T, Sinn D-I, Ko S-Y, Kim E-H, Kim J-M, et al. Pharmacological induction of ischemic Tolerance by glutamate transporter-1 (EAAT2) Upregulation. Stroke. 2007;38(1):177–82. doi: 10.1161/01.STR.0000252091.36912.65.PubMedCrossRefGoogle Scholar
  128. 128.
    Weller ML, Stone IM, Goss A, Rau T, Rova C, Poulsen DJ. Selective overexpression of excitatory amino acid transporter 2 (EAAT2) in astrocytes enhances neuroprotection from moderate but not severe hypoxia-ischemia. Neuroscience. 2008;155(4):1204–11. doi: 10.1016/j.neuroscience.2008.05.059.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Harvey BK, Airavaara M, Hinzman J, Wires EM, Chiocco MJ, Howard DB, et al. Targeted over-expression of glutamate transporter 1 (GLT-1) reduces ischemic brain injury in a rat model of stroke. PLoS One. 2011;6(8):e22135. doi: 10.1371/journal.pone.0022135.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Morris-Blanco KC, Dave KR, Saul I, Koronowski KB, Stradecki HM, Perez-Pinzon MA. Protein Kinase C epsilon promotes cerebral ischemic Tolerance via Modulation of mitochondrial Sirt5. Sci Rep. 2016;6:29790. doi: 10.1038/srep29790.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Di Y, He Y-L, Zhao T, Huang X, Wu K-W, Liu S-H, et al. Methylene blue reduces acute cerebral ischemic injury via the induction of Mitophagy. Mol Med. 2015;21:420–9. doi: 10.2119/molmed.2015.00038.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, et al. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy. 2013;9(9):1321–33. doi: 10.4161/auto.25132.PubMedCrossRefGoogle Scholar
  133. 133.
    Zuo W, Zhang S, Xia C-Y, Guo X-F, He W-B, Chen N-H. Mitochondria autophagy is induced after hypoxic/ischemic stress in a Drp1 dependent manner: the role of inhibition of Drp1 in ischemic brain damage. Neuropharmacology. 2014;86:103–15. doi: 10.1016/j.neuropharm.2014.07.002.PubMedCrossRefGoogle Scholar
  134. 134.
    Shi R-Y, Zhu S-H, Li V, Gibson SB, Xu X-S, Kong J-M. BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci. Ther. 2014;20(12):1045–55. doi: 10.1111/cns.12325.PubMedCrossRefGoogle Scholar
  135. 135.
    Kumari S, Anderson L, Farmer S, Mehta SL, Li PA. Hyperglycemia alters mitochondrial fission and fusion proteins in mice subjected to cerebral ischemia and reperfusion. Transl Stroke Res. 2012;3(2):296–304. doi: 10.1007/s12975-012-0158-9.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Baek S-H, Noh AR, Kim K-A, Akram M, Shin Y-J, Kim E-S, et al. Modulation of mitochondrial function and autophagy mediates carnosine neuroprotection against ischemic brain damage. Stroke. 2014;45(8):2438–43. doi: 10.1161/STROKEAHA.114.005183.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Jin J, Albertz J, Guo Z, Peng Q, Rudow G, Troncoso JC, et al. Neuroprotective effects of PPAR-γ agonist rosiglitazone in N171-82Q mouse model of Huntington’s disease. J Neurochem. 2013;125(3):410–9. doi: 10.1111/jnc.12190.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Dong C, Della-Morte D, Wang L, Cabral D, Beecham A, McClendon MS, et al. Association of the sirtuin and mitochondrial uncoupling protein genes with carotid plaque. PLoS One. 2011;6(11):e27157. doi: 10.1371/journal.pone.0027157.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Lee O-H, Kim J, Kim J-M, Lee H, Kim EH, Bae S-K, et al. Decreased expression of sirtuin 6 is associated with release of high mobility group box-1 after cerebral ischemia. Biochem Biophys Res Commun. 2013;438(2):388–94. doi: 10.1016/j.bbrc.2013.07.085.PubMedCrossRefGoogle Scholar
  140. 140.
    Hu Y, Li R, Yang H, Luo H, Chen Z. Sirtuin 6 is essential for sodium sulfide-mediated cytoprotective effect in ischemia/reperfusion-stimulated brain endothelial cells. J Stroke Cerebrovasc Dis. 2015;24(3):601–9. doi: 10.1016/j.jstrokecerebrovasdis.2014.10.006.PubMedCrossRefGoogle Scholar
  141. 141.
    Shao J, Yang X, Liu T, Zhang T, Xie QR, Xia W. Autophagy induction by SIRT6 is involved in oxidative stress-induced neuronal damage. Protein Cell. 2016;7(4):281–90. doi: 10.1007/s13238-016-0257-6.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Zhang S, Chen P, Huang Z, Hu X, Chen M, Hu S, et al. Sirt7 promotes gastric cancer growth and inhibits apoptosis by epigenetically inhibiting miR-34a. Sci Rep. 2015;5:9787. doi: 10.1038/srep09787.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Wong Y-H, Wu C-C, Lai H-Y, Jheng B-R, Weng H-Y, Chang T-H, et al. Identification of network-based biomarkers of cardioembolic stroke using a systems biology approach with time series data. BMC Syst Biol. 2015;9(Suppl 6):S4. doi: 10.1186/1752-0509-9-S6-S4.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Hubbi ME, Hu H. Kshitiz, Gilkes DM, Semenza GL. Sirtuin-7 inhibits the activity of hypoxia-inducible factors. J Biol Chem. 2013;288(29):20768–75. doi: 10.1074/jbc.M113.476903.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Raval AP, Dave KR, Pérez-Pinzón MA. Resveratrol mimics ischemic preconditioning in the brain. J Cereb Blood Flow Metab. 2006;26(9):1141–7. doi: 10.1038/sj.jcbfm.9600262.PubMedCrossRefGoogle Scholar
  146. 146.
    Yang Y, Jiang S, Dong Y, Fan C, Zhao L, Yang X, et al. Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice. J Pineal Res. 2015;58(1):61–70. doi: 10.1111/jpi.12193.PubMedCrossRefGoogle Scholar
  147. 147.
    Dong W, Li N, Gao D, Zhen H, Zhang X, Li F. Resveratrol attenuates ischemic brain damage in the delayed phase after stroke and induces messenger RNA and protein express for angiogenic factors. J Vasc Surg. 2008;48(3):709–14. doi: 10.1016/j.jvs.2008.04.007.PubMedCrossRefGoogle Scholar
  148. 148.
    Koronowski KB, Dave KR, Saul I, Camarena V, Thompson JW, Neumann JT, et al. Resveratrol preconditioning induces a novel extended window of ischemic Tolerance in the mouse brain. Stroke. 2015;46(8):2293–8. doi: 10.1161/STROKEAHA.115.009876.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Zhu H, Wang Z, Zhu X, Wu X, Li E, Xu Y. Icariin protects against brain injury by enhancing SIRT1-dependent PGC-1alpha expression in experimental stroke. Neuropharmacology. 2010;59(1–2):70–6. doi: 10.1016/j.neuropharm.2010.03.017.PubMedCrossRefGoogle Scholar
  150. 150.
    Chen X, Wales P, Quinti L, Zuo F, Moniot S, Herisson F, et al. The sirtuin-2 inhibitor AK7 is neuroprotective in models of parkinson’s disease but not amyotrophic lateral sclerosis and cerebral ischemia. PLoS One. 2015;10(1):1–15. doi: 10.1371/journal.pone.0116919.Google Scholar
  151. 151.
    Narayan N, Lee IH, Borenstein R, Sun J, Wong R, Tong G, et al. The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature. 2012;492(7428):199–204. doi: 10.1038/nature11700.PubMedCrossRefGoogle Scholar
  152. 152.
    Newton K, Hildebrand JM, Shen Z, Rodriguez D, Alvarez-Diaz S, Petersen S, et al. Is SIRT2 required for necroptosis? Nature. 2014;506(7489):E4–6. doi: 10.1038/nature13024.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Wei L, Zhou Y, Dai Q, Qiao C, Zhao L, Hui H, et al. Oroxylin a induces dissociation of hexokinase II from the mitochondria and inhibits glycolysis by SIRT3-mediated deacetylation of cyclophilin D in breast carcinoma. Cell Death Dis. 2013;4:e601. doi: 10.1038/cddis.2013.131.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Huang W-H, Lee A-R, Yang C-H. Antioxidative and anti-inflammatory activities of polyhydroxyflavonoids of Scutellaria Baicalensis GEORGI. Biosci Biotechnol Biochem. 2006;70(10):2371–80. doi: 10.1271/bbb.50698.PubMedCrossRefGoogle Scholar
  155. 155.
    Kim DH, Jeon SJ, Son KH, Jung JW, Lee S, Yoon BH, et al. The ameliorating effect of oroxylin a on scopolamine-induced memory impairment in mice. Neurobiol Learn Mem. 2007;87(4):536–46. doi: 10.1016/j.nlm.2006.11.005.PubMedCrossRefGoogle Scholar
  156. 156.
    Jiwajinda S, Santisopasri V, Murakami A, Kim O-K, Kim HW, Ohigashi H. Suppressive effects of edible Thai plants on superoxide and nitric oxide generation. Asian Pac J Cancer Prev. 2002;3(3):215–23.PubMedGoogle Scholar
  157. 157.
    Cardinale A, de Stefano MC, Mollinari C, Racaniello M, Garaci E, Merlo D. Biochemical characterization of sirtuin 6 in the brain and its involvement in oxidative stress response. Neurochem Res. 2015;40(1):59–69. doi: 10.1007/s11064-014-1465-1.PubMedCrossRefGoogle Scholar
  158. 158.
    Wang R, Tang Y, Feng B, Ye C, Fang L, Zhang L, et al. Changes in hippocampal synapses and learning-memory abilities in age-increasing rats and effects of tetrahydroxystilbene glucoside in aged rats. Neuroscience. 2007;149(4):739–46. doi: 10.1016/j.neuroscience.2007.07.065.PubMedCrossRefGoogle Scholar
  159. 159.
    Zhang L, Xing Y, Ye C-F, Ai H-X, Wei H-F, Li L. Learning-memory deficit with aging in APP transgenic mice of Alzheimer’s disease and intervention by using tetrahydroxystilbene glucoside. Behav Brain Res. 2006;173(2):246–54. doi: 10.1016/j.bbr.2006.06.034.PubMedCrossRefGoogle Scholar
  160. 160.
    Zhang X-S, Wu Q, Wu L-Y, Ye Z-N, Jiang T-W, Li W, et al. Sirtuin 1 activation protects against early brain injury after experimental subarachnoid hemorrhage in rats. Cell Death Dis. 2016;7(10):e2416. doi: 10.1038/cddis.2016.292.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Toklu HZ, Hakan T, Biber N, Solakoğlu S, Oğünç AV, Sener G. The protective effect of alpha lipoic acid against traumatic brain injury in rats. Free Radic Res. 2009;43(7):658–67. doi: 10.1080/10715760902988843.PubMedCrossRefGoogle Scholar
  162. 162.
    Chen Y-J, Zheng H-Y, Huang X-X, Han S-X, Zhang D-S, Ni J-Z, et al. Neuroprotective effects of Icariin on brain metabolism, mitochondrial functions, and cognition in triple-transgenic Alzheimer’s disease mice. CNS Neurosci Ther. 2016;22(1):63–73. doi: 10.1111/cns.12473.PubMedCrossRefGoogle Scholar
  163. 163.
    Cardinali DP, Brusco LI, Liberczuk C, Furio AM. The use of melatonin in Alzheimer’s disease. Neuro Endocrinol. Lett. 2002;23(Suppl 1):20–3.Google Scholar
  164. 164.
    Zhao Y-N, Li W-F, Li F, Zhang Z, Dai Y-D, Xu A-L, et al. Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway. Biochem Biophys Res Commun. 2013;435(4):597–602. doi: 10.1016/j.bbrc.2013.05.025.
  165. 165.
    Ho DJ, Calingasan NY, Wille E, Dumont M, Beal MF. Resveratrol protects against peripheral deficits in a mouse model of Huntington’s disease. Exp Neurol. 2010;225(1):74–84. doi: 10.1016/j.expneurol.2010.05.006.PubMedCrossRefGoogle Scholar
  166. 166.
    Gueguen C, Palmier B, Plotkine M, Marchand-Leroux C, Besson VC. Neurological and histological consequences induced by in vivo cerebral oxidative stress: evidence for beneficial effects of SRT1720, a sirtuin 1 activator, and sirtuin 1-mediated neuroprotective effects of poly(ADP-ribose) polymerase inhibition. PLoS One. 2014;9(2):e87367. doi: 10.1371/journal.pone.0087367.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Gräff J, Kahn M, Samiei A, Gao J, Ota KT, Rei D, et al. A dietary regimen of caloric restriction or pharmacological activation of SIRT1 to delay the onset of neurodegeneration. J Neurosci. 2013;33(21):8951–60. doi: 10.1523/JNEUROSCI.5657-12.2013.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Smith MR, Syed A, Lukacsovich T, Purcell J, Barbaro BA, Worthge SA, et al. A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington’s disease. Hum Mol Genet. 2014;23(11):2995–3007. doi: 10.1093/hmg/ddu010.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Liu D, Gharavi R, Pitta M, Gleichmann M, Mattson MP. Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. NeuroMolecular Med. 2009;11(1):28–42. doi: 10.1007/s12017-009-8058-1.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Schulz JB, Henshaw DR, Matthews RT, Beal MF. Coenzyme Q10 and nicotinamide and a free radical spin trap protect against MPTP neurotoxicity. Exp Neurol. 1995;132(2):279–83.PubMedCrossRefGoogle Scholar
  171. 171.
    Green KN, Steffan JS, Martinez-Coria H, Sun X, Schreiber SS, Thompson LM, et al. Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J Neurosci. 2008;28(45):11500–10. doi: 10.1523/JNEUROSCI.3203-08.2008.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Zhou X-M, Zhang X, Zhang X-S, Zhuang Z, Li W, Sun Q, et al. SIRT1 inhibition by sirtinol aggravates brain edema after experimental subarachnoid hemorrhage. J Neurosci Res. 2014;92(6):714–22. doi: 10.1002/jnr.23359.PubMedCrossRefGoogle Scholar
  173. 173.
    Spires-Jones TL, Fox LM, Rozkalne A, Pitstick R, Carlson GA, Kazantsev AG. Inhibition of Sirtuin 2 with Sulfobenzoic acid derivative AK1 is non-toxic and potentially Neuroprotective in a mouse model of Frontotemporal dementia. Front Pharmacol. 2012;3:42. doi: 10.3389/fphar.2012.00042.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Luthi-Carter R, Taylor DM, Pallos J, Lambert E, Amore A, Parker A, et al. SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc Natl Acad Sci U S A. 2010;107(17):7927–32. doi: 10.1073/pnas.1002924107.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Chopra V, Quinti L, Kim J, Vollor L, Narayanan KL, Edgerly C, et al. The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington’s disease mouse models. Cell Rep. 2012;2(6):1492–7. doi: 10.1016/j.celrep.2012.11.001.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, et al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science. 2007;317(5837):516–9. doi: 10.1126/science.1143780.PubMedCrossRefGoogle Scholar
  177. 177.
    Kim DH, Jeon SJ, Son KH, Jung JW, Lee S, Yoon BH, et al. Effect of the flavonoid, oroxylin a, on transient cerebral hypoperfusion-induced memory impairment in mice. Pharmacol Biochem Behav. 2006;85(3):658–68. doi: 10.1016/j.pbb.2006.10.025.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • David T. She
    • 1
    • 2
  • Dong-Gyu Jo
    • 3
  • Thiruma V. Arumugam
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
  2. 2.Neurobiology/Ageing Programme, Life Sciences InstituteNational University of SingaporeSingaporeSingapore
  3. 3.School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations