Skip to main content

Advertisement

Log in

Cofilin as a Promising Therapeutic Target for Ischemic and Hemorrhagic Stroke

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Neurovascular unit (NVU) is considered as a conceptual framework for investigating the mechanisms as well as developing therapeutic targets for ischemic and hemorrhagic stroke. From a molecular perspective, oxidative stress, excitotoxicity, inflammation, and disruption of the blood brain barrier are broad pathophysiological frameworks on the basis on which potential therapeutic candidates for ischemic and hemorrhagic stroke could be discussed. Cofilin is a potent actin-binding protein that severs and depolymerizes actin filaments in order to generate the dynamics of the actin cytoskeleton. Although studies of the molecular mechanisms of cofilin-induced reorganization of the actin cytoskeleton have been ongoing for decades, the multicellular functions of cofilin and its regulation in different molecular pathways are expanding beyond its primary role in actin cytoskeleton. This review focuses on the role of cofilin in oxidative stress, excitotoxicity, inflammation, and disruption of the blood brain barrier in the context of NVU as well as how and why cofilin could be studied further as a potential target for ischemic and hemorrhagic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mozaffarian D et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.

    Article  PubMed  Google Scholar 

  2. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67(2):181–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22(9):391–7.

    Article  CAS  PubMed  Google Scholar 

  4. Kleinig TJ, Vink R. Suppression of inflammation in ischemic and hemorrhagic stroke: therapeutic options. Curr Opin Neurol. 2009;22(3):294–301.

    Article  PubMed  Google Scholar 

  5. Kitagawa K. CREB and cAMP response element-mediated gene expression in the ischemic brain. FEBS J. 2007;274(13):3210–7.

    Article  CAS  PubMed  Google Scholar 

  6. Terasaki Y et al. Mechanisms of neurovascular dysfunction in acute ischemic brain. Curr Med Chem. 2014;21(18):2035–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Lok J et al. Intracranial hemorrhage: mechanisms of secondary brain injury. Acta Neurochir Suppl. 2011;111:63–9.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke. 2011;42(6):1781–6.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Lyden P et al. Clomethiazole Acute Stroke Study in ischemic stroke (CLASS-I): final results. Stroke. 2002;33(1):122–8.

    Article  CAS  PubMed  Google Scholar 

  10. Shuaib A et al. NXY-059 for the treatment of acute ischemic stroke. N Engl J Med. 2007;357(6):562–71.

    Article  CAS  PubMed  Google Scholar 

  11. Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4(5):399–415.

    Article  CAS  PubMed  Google Scholar 

  12. Gladstone DJ et al. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke. 2002;33(8):2123–36.

    Article  PubMed  Google Scholar 

  13. Taylor RA, Sansing LH. Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin Dev Immunol. 2013;2013:746068.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Rosell A, Lo EH. Multiphasic roles for matrix metalloproteinases after stroke. Curr Opin Pharmacol. 2008;8(1):82–9.

    Article  CAS  PubMed  Google Scholar 

  15. Hayakawa K, Qiu J, Lo EH. Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke. Ann N Y Acad Sci. 2010;1207:50–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Van Troys M et al. Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol. 2008;87(8–9):649–67.

    PubMed  Google Scholar 

  17. Bellenchi GC et al. N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex. Genes Dev. 2007;21(18):2347–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Andrianantoandro E, Pollard TD. Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell. 2006;24(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  19. Chan C, Beltzner CC, Pollard TD. Cofilin dissociates Arp2/3 complex and branches from actin filaments. Curr Biol. 2009;19(7):537–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Niwa R et al. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell. 2002;108(2):233–46.

    Article  CAS  PubMed  Google Scholar 

  21. Ambach A et al. The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur J Immunol. 2000;30(12):3422–31.

    Article  CAS  PubMed  Google Scholar 

  22. Gohla A, Birkenfeld J, Bokoch GM. Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat Cell Biol. 2005;7(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kim JS, Huang TY, Bokoch GM. Reactive oxygen species regulate a slingshot-cofilin activation pathway. Mol Biol Cell. 2009;20(11):2650–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Wang Y, Shibasaki F, Mizuno K. Calcium signal-induced cofilin dephosphorylation is mediated by Slingshot via calcineurin. J Biol Chem. 2005;280(13):12683–9.

    Article  CAS  PubMed  Google Scholar 

  25. Huang TY et al. Chronophin mediates an ATP-sensing mechanism for cofilin dephosphorylation and neuronal cofilin-actin rod formation. Dev Cell. 2008;15(5):691–703.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Park S, Jung Y. Combined actions of Na/K-ATPase, NCX1 and glutamate dependent NMDA receptors in ischemic rat brain penumbra. Anat Cell Biol. 2010;43(3):201–10.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bamburg JR et al. ADF/cofilin-actin rods in neurodegenerative diseases. Curr Alzheimer Res. 2010;7(3):241–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Bamburg JR. Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol. 1999;15:185–230.

    Article  CAS  PubMed  Google Scholar 

  29. Huang TY, DerMardirossian C, Bokoch GM. Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol. 2006;18(1):26–31.

    Article  CAS  PubMed  Google Scholar 

  30. Bailly M, Jones GE. Polarised migration: cofilin holds the front. Curr Biol. 2003;13(4):R128–30.

    Article  CAS  PubMed  Google Scholar 

  31. Nusco GA et al. Modulation of calcium signalling by the actin-binding protein cofilin. Biochem Biophys Res Commun. 2006;348(1):109–14.

    Article  CAS  PubMed  Google Scholar 

  32. Ohashi K. Roles of cofilin in development and its mechanisms of regulation. Dev Growth Differ. 2015;57(4):275–90.

    Article  CAS  PubMed  Google Scholar 

  33. Schonhofen P et al. Cofilin/actin rod formation by dysregulation of cofilin-1 activity as a central initial step in neurodegeneration. Mini Rev Med Chem. 2014;14(5):393–400.

    Article  CAS  PubMed  Google Scholar 

  34. Maki T et al. Biphasic mechanisms of neurovascular unit injury and protection in CNS diseases. CNS Neurol Disord Drug Targets. 2013;12(3):302–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Carmichael ST. Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol. 2006;59(5):735–42.

    Article  CAS  PubMed  Google Scholar 

  36. Hermann DM, Chopp M. Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol. 2012;11(4):369–80.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Kriz J, Lalancette-Hebert M. Inflammation, plasticity and real-time imaging after cerebral ischemia. Acta Neuropathol. 2009;117(5):497–509.

    Article  CAS  PubMed  Google Scholar 

  38. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72.

    Article  CAS  PubMed  Google Scholar 

  39. Wolf M et al. ADF/cofilin controls synaptic actin dynamics and regulates synaptic vesicle mobilization and exocytosis. Cereb Cortex. 2015;25(9):2863–75.

    Article  PubMed  Google Scholar 

  40. Gu J et al. ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nat Neurosci. 2010;13(10):1208–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Yuen EY et al. Regulation of AMPA receptor channels and synaptic plasticity by cofilin phosphatase Slingshot in cortical neurons. J Physiol. 2010;588(Pt 13):2361–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Rust MB et al. Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics. EMBO J. 2010;29(11):1889–902.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Arvidsson A et al. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang RL et al. Patterns and dynamics of subventricular zone neuroblast migration in the ischemic striatum of the adult mouse. J Cereb Blood Flow Metab. 2009;29(7):1240–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Nawaz S et al. Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Dev Cell. 2015;34(2):139–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pedraza, C.E., et al., Induction of oligodendrocyte differentiation and in vitro myelination by inhibition of rho-associated kinase. ASN Neuro, 2014. 6(4).

  47. Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17(7):796–808.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Napoli I, Neumann H. Protective effects of microglia in multiple sclerosis. Exp Neurol. 2010;225(1):24–8.

    Article  PubMed  Google Scholar 

  49. Gitik M et al. Phagocytic receptors activate and immune inhibitory receptor SIRPalpha inhibits phagocytosis through paxillin and cofilin. Front Cell Neurosci. 2014;8:104.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Cao W et al. Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci Lett. 1988;88(2):233–8.

    Article  CAS  PubMed  Google Scholar 

  51. Floyd RA et al. Translational research involving oxidative stress and diseases of aging. Free Radic Biol Med. 2011;51(5):931–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Gouriou Y et al. Mitochondrial calcium handling during ischemia-induced cell death in neurons. Biochimie. 2011;93(12):2060–7.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Y et al. Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J Neurosci. 2004;24(47):10616–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Klamt F et al. Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin. Nat Cell Biol. 2009;11(10):1241–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Wabnitz GH et al. Mitochondrial translocation of oxidized cofilin induces caspase-independent necrotic-like programmed cell death of T cells. Cell Death Dis. 2010;1:e58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Madineni, A., Q. Alhadidi, and Z.A. Shah, Cofilin inhibition restores neuronal cell death in oxygen-glucose deprivation model of ischemia. Mol Neurobiol, 2015. doi:10.1007/s12035-014-9056-3.

  57. Lo EH. A new penumbra: transitioning from injury into repair after stroke. Nat Med. 2008;14(5):497–500.

    Article  CAS  PubMed  Google Scholar 

  58. Hayakawa K et al. Vascular endothelial growth factor regulates the migration of oligodendrocyte precursor cells. J Neurosci. 2011;31(29):10666–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Cavaliere F et al. Oligodendrocyte differentiation from adult multipotent stem cells is modulated by glutamate. Cell Death Dis. 2012;3:e268.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Fleissner F, Thum T. Critical role of the nitric oxide/reactive oxygen species balance in endothelial progenitor dysfunction. Antioxid Redox Signal. 2011;15(4):933–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Miller AA, Drummond GR, Sobey CG. Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol Ther. 2006;111(3):928–48.

    Article  CAS  PubMed  Google Scholar 

  62. Pacher P, Szabo C. Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am J Pathol. 2008;173(1):2–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Lee MY et al. Mechanisms of vascular smooth muscle NADPH oxidase 1 (Nox1) contribution to injury-induced neointimal formation. Arterioscler Thromb Vasc Biol. 2009;29(4):480–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Juurlink BH, Thorburne SK, Hertz L. Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress. Glia. 1998;22(4):371–8.

    Article  CAS  PubMed  Google Scholar 

  65. Mronga T et al. Mitochondrial pathway is involved in hydrogen-peroxide-induced apoptotic cell death of oligodendrocytes. Glia. 2004;46(4):446–55.

    Article  PubMed  Google Scholar 

  66. Lindenau J et al. Cellular distribution of superoxide dismutases in the rat CNS. Glia. 2000;29(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  67. Dringen R, Gutterer JM, Hirrlinger J. Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem. 2000;267(16):4912–6.

    Article  CAS  PubMed  Google Scholar 

  68. Chen Y et al. Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem. 2001;77(6):1601–10.

    Article  CAS  PubMed  Google Scholar 

  69. Wang Y, Qin ZH. Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis. 2010;15(11):1382–402.

    Article  CAS  PubMed  Google Scholar 

  70. Mabuchi T et al. Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo. J Neurosci. 2001;21(23):9204–13.

    CAS  PubMed  Google Scholar 

  71. Choi DW, Maulucci-Gedde M, Kriegstein AR. Glutamate neurotoxicity in cortical cell culture. J Neurosci. 1987;7(2):357–68.

    CAS  PubMed  Google Scholar 

  72. Kostandy BB. The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol Sci. 2012;33(2):223–37.

    Article  PubMed  Google Scholar 

  73. Nishizawa Y. Glutamate release and neuronal damage in ischemia. Life Sci. 2001;69(4):369–81.

    Article  CAS  PubMed  Google Scholar 

  74. Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature. 2000;403(6767):316–21.

    Article  CAS  PubMed  Google Scholar 

  75. Posadas I et al. Cofilin activation mediates Bax translocation to mitochondria during excitotoxic neuronal death. J Neurochem. 2012;120(4):515–27.

    Article  CAS  PubMed  Google Scholar 

  76. Chen B et al. Both NMDA and non-NMDA receptors mediate glutamate stimulation induced cofilin rod formation in cultured hippocampal neurons. Brain Res. 2012;1486:1–13.

    Article  CAS  PubMed  Google Scholar 

  77. Sutherland BA et al. Cerebral blood flow alteration in neuroprotection following cerebral ischaemia. J Physiol. 2011;589(Pt 17):4105–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Duffney LJ et al. Shank3 deficiency induces NMDA receptor hypofunction via an actin-dependent mechanism. J Neurosci. 2013;33(40):15767–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Anderson CM, Swanson RA. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia. 2000;32(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  80. Martinez-Hernandez A, Bell KP, Norenberg MD. Glutamine synthetase: glial localization in brain. Science. 1977;195(4284):1356–8.

    Article  CAS  PubMed  Google Scholar 

  81. Chaudhry FA et al. Glutamine uptake by neurons: interaction of protons with system a transporters. J Neurosci. 2002;22(1):62–72.

    CAS  PubMed  Google Scholar 

  82. Kvamme E, Roberg B, Torgner IA. Phosphate-activated glutaminase and mitochondrial glutamine transport in the brain. Neurochem Res. 2000;25(9–10):1407–19.

    Article  CAS  PubMed  Google Scholar 

  83. McKenna MC. The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res. 2007;85(15):3347–58.

    Article  CAS  PubMed  Google Scholar 

  84. Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):1–105.

    Article  CAS  PubMed  Google Scholar 

  85. Adolph O et al. Rapid increase of glial glutamate uptake via blockade of the protein kinase A pathway. Glia. 2007;55(16):1699–707.

    Article  PubMed  Google Scholar 

  86. Sheean RK et al. Links between L-glutamate transporters, Na+/K + −ATPase and cytoskeleton in astrocytes: evidence following inhibition with rottlerin. Neuroscience. 2013;254:335–46.

    Article  CAS  PubMed  Google Scholar 

  87. Yan X et al. Interleukin-1 beta enhances endocytosis of glial glutamate transporters in the spinal dorsal horn through activating protein kinase C. Glia. 2014;62(7):1093–109.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Funfschilling U et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature. 2012;485(7399):517–21.

    PubMed Central  PubMed  Google Scholar 

  89. Wilkins A et al. Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J Neurosci. 2003;23(12):4967–74.

    CAS  PubMed  Google Scholar 

  90. Dewar D, Underhill SM, Goldberg MP. Oligodendrocytes and ischemic brain injury. J Cereb Blood Flow Metab. 2003;23(3):263–74.

    Article  PubMed  Google Scholar 

  91. Karadottir R et al. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature. 2005;438(7071):1162–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Yoshioka A et al. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors mediate excitotoxicity in the oligodendroglial lineage. J Neurochem. 1995;64(6):2442–8.

    Article  CAS  PubMed  Google Scholar 

  93. Simonishvili S et al. Identification of Bax-interacting proteins in oligodendrocyte progenitors during glutamate excitotoxicity and perinatal hypoxia-ischemia. ASN Neuro. 2013;5(5):e00131.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. Mathur BN, Deutch AY. Rat meningeal and brain microvasculature pericytes co-express the vesicular glutamate transporters 2 and 3. Neurosci Lett. 2008;435(2):90–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Sharp CD et al. Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor. Am J Physiol Heart Circ Physiol. 2003;285(6):H2592–8.

    Article  CAS  PubMed  Google Scholar 

  96. Basuroy S, Leffler CW, Parfenova H. CORM-A1 prevents blood-brain barrier dysfunction caused by ionotropic glutamate receptor-mediated endothelial oxidative stress and apoptosis. Am J Physiol Cell Physiol. 2013;304(11):C1105–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69.

    Article  CAS  PubMed  Google Scholar 

  98. Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia. 2005;50(4):427–34.

    Article  PubMed  Google Scholar 

  99. Takano T et al. Astrocytes and ischemic injury. Stroke. 2009;40(3 Suppl):S8–12.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Barreto GE et al. Astrocyte proliferation following stroke in the mouse depends on distance from the infarct. PLoS One. 2011;6(11):e27881.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Wagner KR. Modeling intracerebral hemorrhage: glutamate, nuclear factor-kappa B signaling and cytokines. Stroke. 2007;38(2 Suppl):753–8.

    Article  CAS  PubMed  Google Scholar 

  102. Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92(4):463–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Luo XG, Chen SD. The changing phenotype of microglia from homeostasis to disease. Transl Neurodegener. 2012;1(1):9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol. 2008;8(4):279–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Zhou Y et al. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol. 2014;115:25–44.

    Article  CAS  PubMed  Google Scholar 

  106. Lee Y et al. Therapeutically targeting neuroinflammation and microglia after acute ischemic stroke. Biomed Res Int. 2014;2014:297241.

    PubMed Central  PubMed  Google Scholar 

  107. Jin R et al. Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res. 2013;6(5):834–51.

    Article  PubMed  Google Scholar 

  108. Jonsson F et al. Immunological responses and actin dynamics in macrophages are controlled by N-cofilin but are independent from ADF. PLoS One. 2012;7(4):e36034.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  109. Li J et al. Caspase-11 regulates cell migration by promoting Aip1-Cofilin-mediated actin depolymerization. Nat Cell Biol. 2007;9(3):276–86.

    Article  CAS  PubMed  Google Scholar 

  110. Rasmussen I et al. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia. BMC Immunol. 2010;11:44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Hadas S et al. Complement receptor-3 negatively regulates the phagocytosis of degenerated myelin through tyrosine kinase Syk and cofilin. J Neuroinflammation. 2012;9:166.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Fu R et al. Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol. 2014;49(3):1422–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Walsh KP et al. Amyloid-beta and proinflammatory cytokines utilize a prion protein-dependent pathway to activate NADPH oxidase and induce cofilin-actin rods in hippocampal neurons. PLoS One. 2014;9(4):e95995.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. Engelhardt S, Patkar S, Ogunshola OO. Cell-specific blood-brain barrier regulation in health and disease: a focus on hypoxia. Br J Pharmacol. 2014;171(5):1210–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Forster C. Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol. 2008;130(1):55–70.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  116. Structure and function of the blood-brain barrier. 2010. 37(1): p. 13–25.

  117. Yang Y, Rosenberg GA. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke. 2011;42(11):3323–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Keep RF et al. Vascular disruption and blood-brain barrier dysfunction in intracerebral hemorrhage. Fluids Barriers CNS. 2014;11:18.

    Article  PubMed Central  PubMed  Google Scholar 

  119. Koto T et al. Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am J Pathol. 2007;170(4):1389–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Bauer AT et al. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab. 2010;30(4):837–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Willis CL, Meske DS, Davis TP. Protein kinase C activation modulates reversible increase in cortical blood-brain barrier permeability and tight junction protein expression during hypoxia and posthypoxic reoxygenation. J Cereb Blood Flow Metab. 2010;30(11):1847–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Kondo N et al. Thrombin induces rapid disassembly of claudin-5 from the tight junction of endothelial cells. Exp Cell Res. 2009;315(17):2879–87.

    Article  CAS  PubMed  Google Scholar 

  123. Moller T, Weinstein JR, Hanisch UK. Activation of microglial cells by thrombin: past, present, and future. Semin Thromb Hemost. 2006;32 Suppl 1:69–76.

    Article  CAS  PubMed  Google Scholar 

  124. Wang J, Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007;27(5):894–908.

    CAS  PubMed  Google Scholar 

  125. Prasain N, Stevens T. The actin cytoskeleton in endothelial cell phenotypes. Microvasc Res. 2009;77(1):53–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Engelhardt S et al. Differential responses of blood-brain barrier associated cells to hypoxia and ischemia: a comparative study. Fluids Barriers CNS. 2015;12:4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Liu LB et al. Bradykinin increases blood-tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton. J Neurosci Res. 2008;86(5):1153–68.

    Article  CAS  PubMed  Google Scholar 

  128. Suurna MV et al. Cofilin mediates ATP depletion-induced endothelial cell actin alterations. Am J Physiol Renal Physiol. 2006;290(6):F1398–407.

    Article  CAS  PubMed  Google Scholar 

  129. Toshima J et al. Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Mol Biol Cell. 2001;12(4):1131–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Kobayashi M et al. MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration. EMBO J. 2006;25(4):713–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Nagumo Y et al. Cofilin mediates tight-junction opening by redistributing actin and tight-junction proteins. Biochem Biophys Res Commun. 2008;377(3):921–5.

    Article  CAS  PubMed  Google Scholar 

  132. Shiobara T et al. The reversible increase in tight junction permeability induced by capsaicin is mediated via cofilin-actin cytoskeletal dynamics and decreased level of occludin. PLoS One. 2013;8(11):e79954.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  133. Leonard A et al. Thrombin selectively engages LIM kinase 1 and slingshot-1L phosphatase to regulate NF-kappaB activation and endothelial cell inflammation. Am J Physiol Lung Cell Mol Physiol. 2013;305(9):L651–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Tominaga N et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun. 2015;6:6716.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahoor A. Shah.

Ethics declarations

Funding

Qasim Alhadidi is supported by the Higher Committee for Education Development in Iraq and Muhammad Shahdaat Bin Sayeed is supported by the Fulbright Program sponsored by the U.S. Department of State’s Bureau of Educational and Cultural Affairs.

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Approval

No animals were used in this study.

Additional information

Qasim Alhadidi and Muhammad Shahdaat Bin Sayeed contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhadidi, Q., Bin Sayeed, M.S. & Shah, Z.A. Cofilin as a Promising Therapeutic Target for Ischemic and Hemorrhagic Stroke. Transl. Stroke Res. 7, 33–41 (2016). https://doi.org/10.1007/s12975-015-0438-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-015-0438-2

Keywords

Navigation