Translational Stroke Research

, Volume 7, Issue 2, pp 120–131 | Cite as

Ginkgo biloba Extract Prevents Female Mice from Ischemic Brain Damage and the Mechanism Is Independent of the HO1/Wnt Pathway

  • Jatin Tulsulkar
  • Bryan Glueck
  • Terry D. HindsJr.
  • Zahoor A. ShahEmail author
Original Article


It is well known that gender differences exist in experimental or clinical stroke with respect to brain damage and loss of functional outcome. We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia using male mice, and the mechanism of action was attributed to the upregulation of the heme oxygenase 1 (HO1)/Wnt pathway. Here, we sought to investigate whether EGb 761’s protective effect in ovariectomized female mice following stroke is also mediated by the HO1/Wnt pathway. Female mice were ovariectomized (OVX) to remove the protective effect of estrogen and were treated with EGb 761 for 7 days prior to inducing permanent middle cerebral artery occlusion (pMCAO) and allowed to survive for an additional 7 days. At day 8, animals were sacrificed, and the brains were harvested for infarct volume analysis, western blots, and immunohistochemistry. The OVX female mice treated with EGb 761 showed significantly lower infarct size as compared to Veh/OVX animals. EGb 761 treatment in female mice inhibited apoptosis by preventing caspase-3 cleavage and blocking the extrinsic apoptotic pathway. EGb 761 pretreatment significantly enhanced neurogenesis in OVX mice as compared to the Veh/OVX group and significantly upregulated androgen receptor expression with no changes in HO1/Wnt signaling. These results suggest that EGb 761 prevented brain damage in OVX female mice by improving grip strength and neurological deficits, and the mechanism of action is not through HO1/Wnt but via blocking the extrinsic apoptotic pathway.


Ginkgo biloba Gender differences Heme oxygenase 1 Wnt signaling Stroke 


Compliance with Ethical Standards


Research reported in this publication was supported by the National Institutes of Health by the National Center for Complementary and Integrative Medicine (NCCIM) under award number R00AT004197 (Z.A.S.); the National Heart, Lung, and Blood Institute (NHLBI) under award Number K01HL125445 (T.D.H.); the NIH Division of Loan Repayment L32MD009154 (T.D.H.); and start-up funds from the University of Toledo (Z.A.S. and T.D.H.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Approval

All protocols were approved by the University of Toledo Health Science Campus Institutional Animal Care and Utilization Committee, and the guidelines of the National Institutes of Health were followed throughout the study.


  1. 1.
    Turtzo LC et al. Deletion of macrophage migration inhibitory factor worsens stroke outcome in female mice. Neurobiol Dis. 2013;54:421–31.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Roger VL et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–e220.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Alkayed NJ et al. Gender-linked brain injury in experimental stroke. Stroke. 1998;29(1):159–65. discussion 166.CrossRefPubMedGoogle Scholar
  4. 4.
    McCullough LD et al. Postischemic estrogen reduces hypoperfusion and secondary ischemia after experimental stroke. Stroke. 2001;32(3):796–802.CrossRefPubMedGoogle Scholar
  5. 5.
    McCullough LD, Hurn PD. Estrogen and ischemic neuroprotection: an integrated view. Trends Endocrinol Metab. 2003;14(5):228–35.CrossRefPubMedGoogle Scholar
  6. 6.
    Hurn PD et al. Postischemic cerebral blood flow recovery in the female: effect of 17 beta-estradiol. J Cereb Blood Flow Metab. 1995;15(4):666–72.CrossRefPubMedGoogle Scholar
  7. 7.
    Sampei K et al. Stroke in estrogen receptor-alpha-deficient mice. Stroke. 2000;31(3):738–43. discussion 744.CrossRefPubMedGoogle Scholar
  8. 8.
    Dubal DB et al. Estradiol protects against ischemic injury. J Cereb Blood Flow Metab. 1998;18(11):1253–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Murphy S et al. Estrogen and selective estrogen receptor modulators: neuroprotection in the Women’s Health Initiative era. Endocrine. 2003;21(1):17–26.CrossRefPubMedGoogle Scholar
  10. 10.
    Billeci AM et al. Hormone replacement therapy and stroke. Curr Vasc Pharmacol. 2008;6(2):112–23.CrossRefPubMedGoogle Scholar
  11. 11.
    Gibson CL, Coomber B, Murphy SP. Progesterone is neuroprotective following cerebral ischaemia in reproductively ageing female mice. Brain. 2011;134(Pt 7):2125–33.CrossRefPubMedGoogle Scholar
  12. 12.
    Tanaka K et al. Ginkgo biloba extract in an animal model of Parkinson’s disease: a systematic review. Curr Neuropharmacol. 2013;11(4):430–5.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Janssen IM et al. Ginkgo biloba in Alzheimer’s disease: a systematic review. Wien Med Wochenschr. 2010;160(21–22):539–46.CrossRefPubMedGoogle Scholar
  14. 14.
    Shah ZA, Nada SE, Dore S. Heme oxygenase 1, beneficial role in permanent ischemic stroke and in Gingko biloba (EGb 761) neuroprotection. Neuroscience. 2011;180:248–55.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Tulsulkar J, Shah ZA. Ginkgo biloba prevents transient global ischemia-induced delayed hippocampal neuronal death through antioxidant and anti-inflammatory mechanism. Neurochem Int. 2013;62(2):189–97.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Nada SE, Tulsulkar J, Shah ZA. Heme oxygenase 1-mediated neurogenesis is enhanced by Ginkgo biloba (EGb 761(R)) after permanent ischemic stroke in mice. Mol Neurobiol. 2014;49(2):945–56.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Idris AI. Ovariectomy/orchidectomy in rodents. Methods Mol Biol. 2012;816:545–51.CrossRefPubMedGoogle Scholar
  18. 18.
    Nada SE et al. A derivative of the CRMP2 binding compound lanthionine ketimine provides neuroprotection in a mouse model of cerebral ischemia. Neurochem Int. 2012;61(8):1357–63.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Allgood VE, Oakley RH, Cidlowski JA. Modulation by vitamin B6 of glucocorticoid receptor-mediated gene expression requires transcription factors in addition to the glucocorticoid receptor. J Biol Chem. 1993;268(28):20870–6.PubMedGoogle Scholar
  20. 20.
    Vanella L et al. Increased heme-oxygenase 1 expression in mesenchymal stem cell-derived adipocytes decreases differentiation and lipid accumulation via upregulation of the canonical Wnt signaling cascade. Stem Cell Res Ther. 2013;4(2):28.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Liu F et al. Sex differences in caspase activation after stroke. Stroke. 2009;40(5):1842–8.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Siegel C et al. miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci U S A. 2011;108(28):11662–7.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Dart DA et al. Visualising androgen receptor activity in male and female mice. PLoS One. 2013;8(8):e71694.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Ogawa S et al. Survival of reproductive behaviors in estrogen receptor beta gene-deficient (betaERKO) male and female mice. Proc Natl Acad Sci U S A. 1999;96(22):12887–92.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Posa A et al. Sexual dimorphism of cardiovascular ischemia susceptibility is mediated by heme oxygenase. Oxid Med Cell Longev. 2013;2013:521563.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    McCullough LD et al. Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J Cereb Blood Flow Metab. 2005;25(4):502–12.CrossRefPubMedGoogle Scholar
  27. 27.
    Takuma K et al. Ginkgo biloba extract EGb 761 attenuates hippocampal neuronal loss and cognitive dysfunction resulting from chronic restraint stress in ovariectomized rats. Neuroscience. 2007;149(2):256–62.CrossRefPubMedGoogle Scholar
  28. 28.
    Genazzani AR et al. Estrogen, cognition and female ageing. Hum Reprod Update. 2007;13(2):175–87.CrossRefPubMedGoogle Scholar
  29. 29.
    Walesiuk A, Trofimiuk E, Braszko JJ. Gingko biloba extract diminishes stress-induced memory deficits in rats. Pharmacol Rep. 2005;57(2):176–87.PubMedGoogle Scholar
  30. 30.
    Walesiuk A, Trofimiuk E, Braszko JJ. Ginkgo biloba normalizes stress- and corticosterone-induced impairment of recall in rats. Pharmacol Res. 2006;53(2):123–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Chandrasekaran K et al. Neuroprotective effects of bilobalide, a component of Ginkgo biloba extract (EGb 761) in global brain ischemia and in excitotoxicity-induced neuronal death. Pharmacopsychiatry. 2003;36 Suppl 1:S89–94.PubMedGoogle Scholar
  32. 32.
    Nada SE, Shah ZA. Preconditioning with Ginkgo biloba (EGb 761(R)) provides neuroprotection through HO1 and CRMP2. Neurobiol Dis. 2012;46(1):180–9.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Sung JH et al. Ginkgo biloba extract (EGb 761) prevents the ischemic brain injury-induced decrease in parvalbumin expression. Lab Anim Res. 2012;28(2):77–82.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Valvezan AJ, Klein PS. GSK-3 and Wnt signaling in neurogenesis and bipolar disorder. Front Mol Neurosci. 2012;5:1.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Zheng H et al. PLAGL2 regulates Wnt signaling to impede differentiation in neural stem cells and gliomas. Cancer Cell. 2010;17(5):497–509.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Kuwabara T et al. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci. 2009;12(9):1097–105.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Choudhry MA, Bland KI, Chaudry IH. Trauma and immune response—effect of gender differences. Injury. 2007;38(12):1382–91.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Arvin B et al. The role of inflammation and cytokines in brain injury. Neurosci Biobehav Rev. 1996;20(3):445–52.CrossRefPubMedGoogle Scholar
  39. 39.
    Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol. 2010;87(5):779–89.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Manitt C, Thompson KM, Kennedy TE. Developmental shift in expression of netrin receptors in the rat spinal cord: predominance of UNC-5 homologues in adulthood. J Neurosci Res. 2004;77(5):690–700.CrossRefPubMedGoogle Scholar
  41. 41.
    Bradford D, Cole SJ, Cooper HM. Netrin-1: diversity in development. Int J Biochem Cell Biol. 2009;41(3):487–93.CrossRefPubMedGoogle Scholar
  42. 42.
    Masuda T et al. Netrin-1 acts as a repulsive guidance cue for sensory axonal projections toward the spinal cord. J Neurosci. 2008;28(41):10380–5.CrossRefPubMedGoogle Scholar
  43. 43.
    Lu H et al. Netrin-1 hyperexpression in mouse brain promotes angiogenesis and long-term neurological recovery after transient focal ischemia. Stroke. 2012;43(3):838–43.CrossRefPubMedGoogle Scholar
  44. 44.
    Phoenix CH et al. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology. 1959;65:369–82.CrossRefPubMedGoogle Scholar
  45. 45.
    Bialek M et al. Neuroprotective role of testosterone in the nervous system. Pol J Pharmacol. 2004;56(5):509–18.PubMedGoogle Scholar
  46. 46.
    Pike CJ et al. Androgen cell signaling pathways involved in neuroprotective actions. Horm Behav. 2008;53(5):693–705.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Garcia-Segura LM, Azcoitia I, DonCarlos LL. Neuroprotection by estradiol. Prog Neurobiol. 2001;63(1):29–60.CrossRefPubMedGoogle Scholar
  48. 48.
    Ahlbom E et al. Androgen treatment of neonatal rats decreases susceptibility of cerebellar granule neurons to oxidative stress in vitro. Eur J Neurosci. 1999;11(4):1285–91.CrossRefPubMedGoogle Scholar
  49. 49.
    Ahlbom E, Prins GS, Ceccatelli S. Testosterone protects cerebellar granule cells from oxidative stress-induced cell death through a receptor mediated mechanism. Brain Res. 2001;892(2):255–62.CrossRefPubMedGoogle Scholar
  50. 50.
    Yu WH. Sex difference in the regeneration of the hypoglossal nerve in rats. Brain Res. 1982;238(2):404–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Yu WH. Effect of testosterone on the regeneration of the hypoglossal nerve in rats. Exp Neurol. 1982;77(1):129–41.CrossRefPubMedGoogle Scholar
  52. 52.
    Yu WH, Yu MC. Acceleration of the regeneration of the crushed hypoglossal nerve by testosterone. Exp Neurol. 1983;80(2):349–60.CrossRefPubMedGoogle Scholar
  53. 53.
    Ayala P et al. Androgen receptor overexpression is neuroprotective in experimental stroke. Transl Stroke Res. 2011;2(3):346–57.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jatin Tulsulkar
    • 1
  • Bryan Glueck
    • 1
  • Terry D. HindsJr.
    • 3
  • Zahoor A. Shah
    • 1
    • 2
    Email author
  1. 1.Department of Medicinal and Biological ChemistryUniversity of ToledoToledoUSA
  2. 2.Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical SciencesUniversity of ToledoToledoUSA
  3. 3.Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, College of Medicine and Life SciencesUniversity of ToledoToledoUSA

Personalised recommendations