Skip to main content

Advertisement

Log in

Effects of Focal Cerebral Ischemia on Exosomal Versus Serum miR126

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Emerging data suggest that exosomal microRNA (miRNA) may provide potential biomarkers in acute ischemic stroke. However, the effects of ischemia-reperfusion on total versus exosomal miRNA responses in circulating blood remain to be fully defined. Here, we quantified levels of miR-126 in whole serum versus exosomes extracted from serum and compared these temporal profiles against reperfusion and outcomes in a rat model of acute focal cerebral ischemia. First, in vitro experiments confirmed the vascular origin and changes in miR-126 in brain endothelial cultures subjected to oxygen-glucose deprivation. Then in vivo experiments were performed by inducing permanent or transient focal cerebral ischemia in rats, and total serum and exosomal miR-126 levels were quantified, along with measurements of infarction and neurological outcomes. Exosomal levels of miR-126 showed a transient reduction at 3 h post-ischemia that appeared to normalize back close to pre-ischemic baselines after 24 h. There were no detectable differences in exosomal miR-126 responses in permanent or transient ischemia. Serum miR-126 levels appeared to differ in permanent versus transient ischemia. Significant reductions in serum miR-126 were detected at 3 h after permanent ischemia but not transient ischemia. By 24 h, serum miR-126 levels were back close to baseline in both permanent and transient ischemia. Overall, there were no correlations between serum miR-126 and exosomal miR-126. This proof-of-concept study suggests that changes in serum miR-126 may be able to distinguish severe permanent ischemia from milder injury after transient ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  3. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 2001;106(1):23–34.

    Article  CAS  PubMed  Google Scholar 

  4. Duursma AM, Kedde M, Schrier M, le Sage C, Agami R. miR-148 targets human DNMT3b protein coding region. Rna. 2008;14(5):872–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A. 2008;105(5):1608–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787–98.

    Article  CAS  PubMed  Google Scholar 

  7. Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol. 2004;5(9):R68.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lai M, Macleod M. MicroRNA--taking regulation of protein synthesis to another level. Cerebrovasc Dis. 2005;20(1):49–50. discussion.

    Article  PubMed  Google Scholar 

  9. Fiore R, Siegel G, Schratt G. MicroRNA function in neuronal development, plasticity and disease. Biochim Biophys Acta. 2008;1779(8):471–8.

    Article  CAS  PubMed  Google Scholar 

  10. Christensen M, Schratt GM. microRNA involvement in developmental and functional aspects of the nervous system and in neurological diseases. Neurosci Lett. 2009;466(2):55–62.

    Article  CAS  PubMed  Google Scholar 

  11. Vemuganti R. The microRNAs and stroke: no need to be coded to be counted. Transl Stroke Res. 2010;1(3):158–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Rink C, Khanna S. MicroRNA in ischemic stroke etiology and pathology. Physiol Genomics. 2011;43(10):521–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Sorensen SS, Nygaard AB, Nielsen MY, Jensen K, Christensen T. miRNA expression profiles in cerebrospinal fluid and blood of patients with acute ischemic stroke. Transl Stroke Res. 2014;5(6):711–8.

    Article  PubMed  Google Scholar 

  14. Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab. 2009;29(4):675–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Selvamani A, Williams MH, Miranda RC, Sohrabji F. Circulating miRNA profiles provide a biomarker for severity of stroke outcomes associated with age and sex in a rat model. Clin Sci (Lond). 2014;127(2):77–89.

    Article  CAS  Google Scholar 

  16. Sepramaniam S, Tan JR, Tan KS, DeSilva DA, Tavintharan S, Woon FP, et al. Circulating microRNAs as biomarkers of acute stroke. Int J Mol Sci. 2014;15(1):1418–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Chevillet JR, Lee I, Briggs HA, He Y, Wang K. Issues and prospects of microRNA-based biomarkers in blood and other body fluids. Molecules. 2014;19(5):6080–105.

    Article  PubMed  Google Scholar 

  18. Smalheiser NR. Do Neural Cells Communicate with Endothelial Cells via Secretory Exosomes and Microvesicles? Cardiovasc Psychiatry Neurol. 2009;2009:383086.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Wu L, Walas S, Leung W, Sykes DB, Wu J, Lo EH, et al. Neuregulin1-beta decreases IL-1beta-induced neutrophil adhesion to human brain microvascular endothelial cells. Transl Stroke Res. 2015;6(2):116–24.

    Article  CAS  PubMed  Google Scholar 

  20. Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011;2:180.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab. 2000;20(12):1681–9.

    Article  CAS  PubMed  Google Scholar 

  22. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15(2):261–71.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Wu F, Yang Z, Li G. Role of specific microRNAs for endothelial function and angiogenesis. Biochem Biophys Res Commun. 2009;386(4):549–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. van Solingen C, Seghers L, Bijkerk R, Duijs JM, Roeten MK, van Oeveren-Rietdijk AM, et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med. 2009;13(8A):1577–85.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Foerch C, Montaner J, Furie KL, Ning MM, Lo EH. Invited article: searching for oracles? Blood biomarkers in acute stroke. Neurology. 2009;73(5):393–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Vemuganti R. All’s well that transcribes well: non-coding RNAs and post-stroke brain damage. Neurochem Int. 2013;63(5):438–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ye P, Liu J, He F, Xu W, Yao K. Hypoxia-induced deregulation of miR-126 and its regulative effect on VEGF and MMP-9 expression. Int J Med Sci. 2014;11(1):17–23.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Long G, Wang F, Li H, Yin Z, Sandip C, Lou Y, et al. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol. 2013;13:178.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE. MicroRNA-9 and microRNA-126 expression levels in patients with essential hypertension: potential markers of target-organ damage. J Am Soc Hypertens. 2014;8(6):368–75.

    Article  CAS  PubMed  Google Scholar 

  30. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010;107(6):810–7.

    Article  CAS  PubMed  Google Scholar 

  31. Wei Y, Nazari-Jahantigh M, Neth P, Weber C, Schober A. MicroRNA-126, −145, and −155: a therapeutic triad in atherosclerosis? Arterioscler Thromb Vasc Biol. 2013;33(3):449–54.

    Article  CAS  PubMed  Google Scholar 

  32. Di Y, Lei Y, Yu F, Changfeng F, Song W, Xuming M. MicroRNAs expression and function in cerebral ischemia reperfusion injury. J Mol Neurosci. 2014;53(2):242–50.

    Article  CAS  PubMed  Google Scholar 

  33. Weiss JB, Eisenhardt SU, Stark GB, Bode C, Moser M, Grundmann S. MicroRNAs in ischemia-reperfusion injury. Am J Cardiovasc Dis. 2012;2(3):237–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A. 2008;105(5):1516–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15(2):272–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Meng S, Cao JT, Zhang B, Zhou Q, Shen CX, Wang CQ. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol. 2012;53(1):64–72.

    Article  CAS  PubMed  Google Scholar 

  37. Ning M, Sarracino DA, Kho AT, Guo S, Lee SR, Krastins B, et al. Proteomic temporal profile of human brain endothelium after oxidative stress. Stroke. 2011;42(1):37–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Guo S, Lo EH. Dysfunctional cell-cell signaling in the neurovascular unit as a paradigm for central nervous system disease. Stroke. 2009;40(3 Suppl):S4–7.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Weng H, Shen C, Hirokawa G, Ji X, Takahashi R, Shimada K, et al. Plasma miR-124 as a biomarker for cerebral infarction. Biomed Res. 2011;32(2):135–41.

    Article  CAS  PubMed  Google Scholar 

  40. Liu XS, Chopp M, Zhang RL, Tao T, Wang XL, Kassis H, et al. MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway. PLoS One. 2011;6(8), e23461.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Egea V, Schober A, Weber C. Circulating miRNAs: messengers on the move in cardiovascular disease. Thromb Haemost. 2012;108(4):590–1.

    Article  CAS  PubMed  Google Scholar 

  42. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

    Article  CAS  PubMed  Google Scholar 

  43. Stoorvogel W. Functional transfer of microRNA by exosomes. Blood. 2012;119(3):646–8.

    Article  CAS  PubMed  Google Scholar 

  44. Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119(3):756–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Taverna S, Amodeo V, Saieva L, Russo A, Giallombardo M, De Leo G, et al. Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells. Mol Cancer. 2014;13:169.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685–94.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang ZG, Chopp M. Promoting brain remodeling to aid in stroke recovery. Trends Mol Med. 2015;21(9):543–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Drs. Xandra Breakefield and Balaj Leonora for expert advice on exosomes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changhong Xing or Xunming Ji.

Ethics declarations

Ethical approval

All animal experiments were approved by the MGH Institutional Animal Care and Use Committee in accordance with the NIH Guide for the Care and Use of Laboratory Animals. This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

None.

Funding

Supported in part by grants from NIH and National Natural Science Foundation of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Du, Y., Esposito, E. et al. Effects of Focal Cerebral Ischemia on Exosomal Versus Serum miR126. Transl. Stroke Res. 6, 478–484 (2015). https://doi.org/10.1007/s12975-015-0429-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-015-0429-3

Keywords

Navigation