Skip to main content

Advertisement

Log in

The Single and Double Blood Injection Rabbit Subarachnoid Hemorrhage Model

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Over the past 30 years, the rabbit subarachnoid hemorrhage model (SAH) has been used for investigating the post-hemorrhage pathology, especially with respect to understanding of the mechanisms of cerebral vasospasm. However, the molecular mechanisms of cerebral vasospasm remain to be elucidated. Furthermore, it is not clear whether the rabbit SAH model is suitable for the investigation of pathological conditions other than cerebral vasospasm, such as early brain injury. Therefore, the properties of the rabbit SAH model need to be validated, and the reasons for using the rabbit should be clarified. This review explores the settings and technical issues of establishing a rabbit cisterna magna single and double blood injection SAH model and discusses the characteristics and feasibilities of the models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Offerhaus L, van Gool J. Electrocardiographic changes and tissue catecholamines in experimental subarachnoid haemorrhage. Cardiovasc Res. 1969;3(4):433–40.

    CAS  PubMed  Google Scholar 

  2. Svendgaard NA, Edvinsson L, Owman C, Sahlin C. Increased sensitivity of the basilar artery to norepinephrine and 5-hydroxytryptamine following experimental subarachnoid hemorrhage. Surg Neurol. 1977;8(3):191–5.

    CAS  PubMed  Google Scholar 

  3. Edvinsson L, Egund N, Owman C, Sahlin C, Svendgaard NA. Reduced noradrenaline uptake and retention in cerebrovascular nerves associated with angiographically visible vasoconstriction following experimental subarachnoid hemorrhage in rabbits. Brain Res Bull. 1982;9(1–6):799–805.

    CAS  PubMed  Google Scholar 

  4. Chan RC, Durity FA, Thompson GB, Nugent RA, Kendall M. The role of the prostacyclin-thromboxane system in cerebral vasospasm following induced subarachnoid hemorrhage in the rabbit. J Neurosurg. 1984;61(6):1120–8. doi:10.3171/jns.1984.61.6.1120.

    CAS  PubMed  Google Scholar 

  5. Liszczak TM, Black PM, Tzouras A, Foley L, Zervas NT. Morphological changes of the basilar artery, ventricles, and choroid plexus after experimental SAH. J Neurosurg. 1984;61(3):486–93. doi:10.3171/jns.1984.61.3.0486.

    CAS  PubMed  Google Scholar 

  6. Nakano Y, Rumbaugh CL, Wang AM, Zamani AA, Colucci V. Experimental treatment of cerebral vascular spasm secondary to subarachnoid hemorrhage. Radiat Med. 1983;1(4):299–304.

    CAS  PubMed  Google Scholar 

  7. Svendgaard NA, Edvinsson L, Owman C. Changes in sensitivity of cerebral vessels to noradrenaline and 5-hydroxytryptamine in the presence of subarachnoid blood. Acta Physiol Scand Suppl. 1977;452:73–5.

    CAS  PubMed  Google Scholar 

  8. Gules I, Satoh M, Clower BR, Nanda A, Zhang JH. Comparison of three rat models of cerebral vasospasm. Am J Physiol Heart Circ Physiol. 2002;283(6):H2551–9. doi:10.1152/ajpheart.00616.2002.

    CAS  PubMed  Google Scholar 

  9. Baker KF, Zervas NT, Pile-Spellman J, Vacanti FX, Miller D. Angiographic evidence of basilar artery constriction in the rabbit: a new model of vasospasm. Surg Neurol. 1987;27(2):107–12.

    CAS  PubMed  Google Scholar 

  10. Endo S, Branson PJ, Alksne JF. Experimental model of symptomatic vasospasm in rabbits. Stroke. 1988;19(11):1420–5.

    CAS  PubMed  Google Scholar 

  11. Marbacher S, Fandino J, Kitchen ND. Standard intracranial in vivo animal models of delayed cerebral vasospasm. Br J Neurosurg. 2010;24(4):415–34. doi:10.3109/02688691003746274.

    PubMed  Google Scholar 

  12. Spallone A, Pastore FS. Cerebral vasospasm in a double-injection model in rabbit. Surg Neurol. 1989;32(6):408–17.

    CAS  PubMed  Google Scholar 

  13. Zhou ML, Shi JX, Zhu JQ, Hang CH, Mao L, Chen KF, et al. Comparison between one- and two-hemorrhage models of cerebral vasospasm in rabbits. J Neurosci Methods. 2007;159(2):318–24. doi:10.1016/j.jneumeth.2006.07.026.

    PubMed  Google Scholar 

  14. Bunc G, Kovacic S, Strnad S. Attenuation of cerebral vasospasm in rabbits using clonidine hydrochloride, a central adrenergic agonist. Auton Neurosci. 2003;105(1):71–6. doi:10.1016/S1566-0702(03)00003-1.

    CAS  PubMed  Google Scholar 

  15. Naraoka M, Munakata A, Matsuda N, Shimamura N, Ohkuma H. Suppression of the Rho/Rho-Kinase pathway and prevention of cerebral vasospasm by combination treatment with statin and fasudil after subarachnoid hemorrhage in rabbit. Transl Stroke Res. 2013;4(3):368–74. doi:10.1007/s12975-012-0247-9.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Song JN, Chen H, Zhang M, Zhao YL, Ma XD. Dynamic change in cerebral microcirculation and focal cerebral metabolism in experimental subarachnoid hemorrhage in rabbits. Metab Brain Dis. 2013;28(1):33–43. doi:10.1007/s11011-012-9369-8.

    CAS  PubMed  Google Scholar 

  17. Nakajima M, Date I, Takahashi K, Ninomiya Y, Asari S, Ohmoto T. Effects of aging on cerebral vasospasm after subarachnoid hemorrhage in rabbits. Stroke. 2001;32(3):620–8.

    CAS  PubMed  Google Scholar 

  18. McGirt MJ, Pradilla G, Legnani FG, Thai QA, Recinos PF, Tamargo RJ, et al. Systemic administration of simvastatin after the onset of experimental subarachnoid hemorrhage attenuates cerebral vasospasm. Neurosurgery. 2006;58(5):945–51. doi:10.1227/01.NEU.0000210262.67628.7E. discussion −51.

    PubMed  Google Scholar 

  19. Cosar M, Eser O, Fidan H, Sahin O, Buyukbas S, Ela Y, et al. The neuroprotective effect of dexmedetomidine in the hippocampus of rabbits after subarachnoid hemorrhage. Surg Neurol. 2009;71(1):54–9. doi:10.1016/j.surneu.2007.08.020. discussion 9.

    PubMed  Google Scholar 

  20. Fathi AR, Marbacher S, Graupner T, Wehrli F, Jakob SM, Schroth G, et al. Continuous intrathecal glyceryl trinitrate prevents delayed cerebral vasospasm in the single-SAH rabbit model in vivo. Acta Neurochir (Wien). 2011;153(8):1669–75. doi:10.1007/s00701-011-1049-7. discussion 75.

    Google Scholar 

  21. Debdi M, Seylaz J, Sercombe R. Early changes in rabbit cerebral artery reactivity after subarachnoid hemorrhage. Stroke. 1992;23(8):1154–62.

    CAS  PubMed  Google Scholar 

  22. Gomis P, Tran-Dinh YR, Sercombe C, Sercombe R. Dexamethasone preventing contractile and cytoskeletal protein changes in the rabbit basilar artery after subarachnoid hemorrhage. J Neurosurg. 2005;102(4):715–20. doi:10.3171/jns.2005.102.4.0715.

    CAS  PubMed  Google Scholar 

  23. Tran Dinh YR, Jomaa A, Callebert J, Reynier-Rebuffel AM, Tedgui A, Savarit A, et al. Overexpression of cyclooxygenase-2 in rabbit basilar artery endothelial cells after subarachnoid hemorrhage. Neurosurgery. 2001;48(3):626–33. discussion 33–5.

    CAS  PubMed  Google Scholar 

  24. Roux S, Clozel M, Wolfgang R, Sprecher U, Clozel JP. Comparative evaluation of acute cerebral vasospasm by the microsphere and the angiography techniques. J Neurosci Methods. 1995;59(2):245–52.

    CAS  PubMed  Google Scholar 

  25. Visocchi M, Di Rocco F, Ciampini A, Di Muro L. A new animal model for monitoring the early cerebral vasospasm after subarachnoid haemorrhage. J Neurosurg Sci. 2006;50(4):89–94.

    CAS  PubMed  Google Scholar 

  26. Kawada S, Kinugasa K, Meguro T, Hirotsune N, Tokunaga K, Kamata I, et al. Experimental study of intracisternal administration of tissue-type plasminogen activator followed by cerebrospinal fluid drainage in the ultra-early stage of subarachnoid haemorrhage. Acta Neurochir (Wien). 1999;141(12):1331–8.

    CAS  Google Scholar 

  27. Bunc G, Kovacic S, Strnad S. Evaluation of functional response of cerebral arteries by a new morphometric technique. Auton Neurosci. 2001;93(1–2):41–7. doi:10.1016/S1566-0702(01)00327-7.

    CAS  PubMed  Google Scholar 

  28. Kovacic S, Bunc G, Ravnik J. Correspondence between the time course of cerebral vasospasm and the level of cerebral dopamine-beta-hydroxylase in rabbits. Auton Neurosci. 2006;130(1–2):28–31. doi:10.1016/j.autneu.2006.05.002.

    CAS  PubMed  Google Scholar 

  29. Mapara M, Thomas BS, Bhat KM. Rabbit as an animal model for experimental research. Dent Res J (Isfahan). 2012;9(1):111–8. doi:10.4103/1735-3327.92960.

    Google Scholar 

  30. Fukami M, Tani E, Takai A, Yamaura I, Minami N. Activity of smooth muscle phosphatases 1 and 2A in rabbit basilar artery in vasospasm. Stroke. 1995;26(12):2321–7.

    CAS  PubMed  Google Scholar 

  31. Nakagomi T, Kassell NF, Sasaki T, Lehman RM, Hongo K, Ogawa H, et al. Time course of the blood-arterial wall barrier disruption following experimental subarachnoid haemorrhage. Acta Neurochir (Wien). 1989;98(3–4):176–83.

    CAS  Google Scholar 

  32. Chen G, Zhang S, Shi J, Ai J, Hang C. Effects of recombinant human erythropoietin (rhEPO) on JAK2/STAT3 pathway and endothelial apoptosis in the rabbit basilar artery after subarachnoid hemorrhage. Cytokine. 2009;45(3):162–8. doi:10.1016/j.cyto.2008.11.015.

    PubMed  Google Scholar 

  33. Fang Q, Chen G, Zhu W, Dong W, Wang Z. Influence of melatonin on cerebrovascular proinflammatory mediators expression and oxidative stress following subarachnoid hemorrhage in rabbits. Mediators Inflamm. 2009;2009:426346. doi:10.1155/2009/426346.

    PubMed Central  PubMed  Google Scholar 

  34. Li S, Xue J, Shi J, Yin H, Zhang Z. Combinatorial administration of insulin and vitamin C alleviates the cerebral vasospasm after experimental subarachnoid hemorrhage in rabbit. BMC Neurosci. 2011;12:77. doi:10.1186/1471-2202-12-77.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Zhuang Z, Zhou ML, You WC, Zhu L, Ma CY, Sun XJ, et al. Hydrogen-rich saline alleviates early brain injury via reducing oxidative stress and brain edema following experimental subarachnoid hemorrhage in rabbits. BMC Neurosci. 2012;13:47. doi:10.1186/1471-2202-13-47.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Johshita H, Kassell NF, Sasaki T, Ogawa H. Impaired capillary perfusion and brain edema following experimental subarachnoid hemorrhage: a morphometric study. J Neurosurg. 1990;73(3):410–7. doi:10.3171/jns.1990.73.3.0410.

    CAS  PubMed  Google Scholar 

  37. Marbacher S, Neuschmelting V, Graupner T, Jakob SM, Fandino J. Prevention of delayed cerebral vasospasm by continuous intrathecal infusion of glyceroltrinitrate and nimodipine in the rabbit model in vivo. Intensive Care Med. 2008;34(5):932–8. doi:10.1007/s00134-008-0995-x.

    CAS  PubMed  Google Scholar 

  38. Neuschmelting V, Marbacher S, Fathi AR, Jakob SM, Fandino J. Elevated level of endothelin-1 in cerebrospinal fluid and lack of nitric oxide in basilar arterial plasma associated with cerebral vasospasm after subarachnoid haemorrhage in rabbits. Acta Neurochir (Wien). 2009;151(7):795–801. doi:10.1007/s00701-009-0350-1. discussion −2.

    Google Scholar 

  39. Nihei H, Kassell NF, Dougherty DA, Sasaki T. Does vasospasm occur in small pial arteries and arterioles of rabbits? Stroke. 1991;22(11):1419–25.

    CAS  PubMed  Google Scholar 

  40. Pasqualin A, Tsukahara T, Kassell NF, Torner JC. Effect of nicardipine on basilar artery vasoactive responses after subarachnoid hemorrhage. Neurosurgery. 1992;31(4):697–703. discussion −4.

    CAS  PubMed  Google Scholar 

  41. Vollmer DG, Hongo K, Kassell NF, Ogawa H, Tsukahara T, Lehman RM. Effect of intracisternal antithrombin III on subarachnoid hemorrhage-induced arterial narrowing. J Neurosurg. 1989;70(4):599–604. doi:10.3171/jns.1989.70.4.0599.

    CAS  PubMed  Google Scholar 

  42. Zuccarello M, Marsch JT, Schmitt G, Woodward J, Anderson DK. Effect of the 21-aminosteroid U-74006 F on cerebral vasospasm following subarachnoid hemorrhage. J Neurosurg. 1989;71(1):98–104. doi:10.3171/jns.1989.71.1.0098.

    CAS  PubMed  Google Scholar 

  43. Erdi MF, Guney O, Kiyici A, Esen H. The effects of alpha lipoic acid on cerebral vasospasm following experimental subarachnoid hemorrhage in the rabbit. Turk Neurosurg. 2011;21(4):527–33. doi:10.5137/1019-5149.JTN. 4431-11.1.

    PubMed  Google Scholar 

  44. Firat MM, Gelebek V, Orer HS, Belen D, Firat AK, Balkanci F. Selective intraarterial nimodipine treatment in an experimental subarachnoid hemorrhage model. AJNR Am J Neuroradiol. 2005;26(6):1357–62.

    PubMed  Google Scholar 

  45. Guney O, Erdi F, Esen H, Kiyici A, Kocaogullar Y. N-acetylcysteine prevents vasospasm after subarachnoid hemorrhage. World Neurosurg. 2010;73(1):42–9. doi:10.1016/j.surneu.2009.06.003. discussion e3.

    PubMed  Google Scholar 

  46. Miller CA, Lombard FW, Wu CT, Hubbard CJ, Silbajoris L, Borel CO, et al. Role of vascular mitogens in subarachnoid hemorrhage-associated cerebral vasculopathy. Neurocrit Care. 2006;5(3):215–21. doi:10.1385/NCC:5:3:215.

    PubMed  Google Scholar 

  47. Seckin H, Simsek S, Ozturk E, Yigitkanli K, Ozen O, Besalti O, et al. Topiramate attenuates hippocampal injury after experimental subarachnoid hemorrhage in rabbits. Neurol Res. 2009;31(5):490–5. doi:10.1179/016164108X339369.

    CAS  PubMed  Google Scholar 

  48. Alafaci C, Salpietro F, Grasso G, Sfacteria A, Passalacqua M, Morabito A, et al. Effect of recombinant human erythropoietin on cerebral ischemia following experimental subarachnoid hemorrhage. Eur J Pharmacol. 2000;406(2):219–25.

    CAS  PubMed  Google Scholar 

  49. Aydin MV, Caner H, Sen O, Ozen O, Atalay B, Cekinmez M, et al. Effect of melatonin on cerebral vasospasm following experimental subarachnoid hemorrhage. Neurol Res. 2005;27(1):77–82. doi:10.1179/016164105X18331.

    CAS  PubMed  Google Scholar 

  50. Barbosa MD, Arthur AS, Louis RH, MacDonald T, Polin RS, Gazak C, et al. The novel 5-lipoxygenase inhibitor ABT-761 attenuates cerebral vasospasm in a rabbit model of subarachnoid hemorrhage. Neurosurgery. 2001;49(5):1205–12. discussion 12–3.

    CAS  PubMed  Google Scholar 

  51. Buemi M, Grasso G, Corica F, Calapai G, Salpietro FM, Casuscelli T, et al. In vivo evidence that erythropoietin has a neuroprotective effect during subarachnoid hemorrhage. Eur J Pharmacol. 2000;392(1–2):31–4.

    CAS  PubMed  Google Scholar 

  52. Foley PL, Caner HH, Kassell NF, Lee KS. Reversal of subarachnoid hemorrhage-induced vasoconstriction with an endothelin receptor antagonist. Neurosurgery. 1994;34(1):108–12. discussion 12–3.

    CAS  PubMed  Google Scholar 

  53. Grasso G, Passalacqua M, Sfacteria A, Conti A, Morabito A, Mazzullo G, et al. Does administration of recombinant human erythropoietin attenuate the increase of S-100 protein observed in cerebrospinal fluid after experimental subarachnoid hemorrhage? J Neurosurg. 2002;96(3):565–70. doi:10.3171/jns.2002.96.3.0565.

    CAS  PubMed  Google Scholar 

  54. Kikkawa Y, Kameda K, Hirano M, Sasaki T, Hirano K. Impaired feedback regulation of the receptor activity and the myofilament Ca2+ sensitivity contributes to increased vascular reactiveness after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2010;30(9):1637–50. doi:10.1038/jcbfm.2010.35.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Sen O, Caner H, Aydin MV, Ozen O, Atalay B, Altinors N, et al. The effect of mexiletine on the level of lipid peroxidation and apoptosis of endothelium following experimental subarachnoid hemorrhage. Neurol Res. 2006;28(8):859–63. doi:10.1179/016164106X115099.

    CAS  PubMed  Google Scholar 

  56. Takahashi S, Kassell NF, Toshima M, Dougherty DA, Foley PL, Lee KS. Effect of U88999E on experimental cerebral vasospasm in rabbits. Neurosurgery. 1993;32(2):281–8. discussion 8.

    CAS  PubMed  Google Scholar 

  57. Wanebo JE, Arthur AS, Louis HG, West K, Kassell NF, Lee KS, et al. Systemic administration of the endothelin-A receptor antagonist TBC 11251 attenuates cerebral vasospasm after experimental subarachnoid hemorrhage: dose study and review of endothelin-based therapies in the literature on cerebral vasospasm. Neurosurgery. 1998;43(6):1409–17. discussion 17–8.

    CAS  PubMed  Google Scholar 

  58. Bavbek M, Polin R, Kwan AL, Arthur AS, Kassell NF, Lee KS. Monoclonal antibodies against ICAM-1 and CD18 attenuate cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. Stroke. 1998;29(9):1930–5. discussion 5–6.

    CAS  PubMed  Google Scholar 

  59. Bilginer B, Onal MB, Narin F, Soylemezoglu F, Ziyal IM, Ozgen T. The effects of intravenous cilostazol and nimodipine on cerebral vasospasm after subarachnoid hemorrhage in an experimental rabbit model. Turk Neurosurg. 2009;19(4):374–9.

    PubMed  Google Scholar 

  60. Cengiz SL, Erdi MF, Tosun M, Atalik E, Avunduk MC, Sonmez FC, et al. Beneficial effects of levosimendan on cerebral vasospasm induced by subarachnoid haemorrhage: an experimental study. Brain Inj. 2010;24(6):877–85. doi:10.3109/02699051003789260.

    PubMed  Google Scholar 

  61. Cheng G, Chunlei W, Pei W, Zhen L, Xiangzhen L. Simvastatin activates Akt/glycogen synthase kinase-3beta signal and inhibits caspase-3 activation after experimental subarachnoid hemorrhage. Vascul Pharmacol. 2010;52(1–2):77–83. doi:10.1016/j.vph.2009.12.001.

    PubMed  Google Scholar 

  62. Foley PL, Kassell NF, Hudson SB, Lee KS. Hemoglobin penetration in the wall of the rabbit basilar artery after subarachnoid hemorrhage and intracisternal hemoglobin injection. Acta Neurochir (Wien). 1993;123(1–2):82–6.

    CAS  Google Scholar 

  63. Grieb P, Ryba MS, Sawicki J, Chrapusta SJ. Oral coenzyme Q10 administration prevents the development of ischemic brain lesions in a rabbit model of symptomatic vasospasm. Acta Neuropathol. 1997;94(4):363–8.

    CAS  PubMed  Google Scholar 

  64. Hirashima Y, Endo S, Otsuji T, Karasawa K, Nojima S, Takaku A. Platelet-activating factor and cerebral vasospasm following subarachnoid hemorrhage. J Neurosurg. 1993;78(4):592–7. doi:10.3171/jns.1993.78.4.0592.

    CAS  PubMed  Google Scholar 

  65. Iseda K, Ono S, Onoda K, Satoh M, Manabe H, Nishiguchi M, et al. Antivasospastic and antiinflammatory effects of caspase inhibitor in experimental subarachnoid hemorrhage. J Neurosurg. 2007;107(1):128–35. doi:10.3171/JNS-07/07/0128.

    CAS  PubMed  Google Scholar 

  66. Kaneko A, Moritake K, Kimura Y. Inhibitory effect of deuterium oxide on cerebral vasospasm after experimental subarachnoid hemorrhage in a rabbit model. Neurol Res. 2005;27(4):446–51. doi:10.1179/016164105X49201.

    PubMed  Google Scholar 

  67. Kiris T, Karasu A, Yavuz C, Erdem T, Unal F, Hepgul K, et al. Reversal of cerebral vasospasm by the nitric oxide donor SNAP in an experimental model of subarachnoid haemorrhage. Acta Neurochir (Wien). 1999;141(12):1323–8. discussion 8–9.

    CAS  Google Scholar 

  68. Satoh M, Date I, Nakajima M, Takahashi K, Iseda K, Tamiya T, et al. Inhibition of poly(ADP-ribose) polymerase attenuates cerebral vasospasm after subarachnoid hemorrhage in rabbits. Stroke. 2001;32(1):225–31.

    CAS  PubMed  Google Scholar 

  69. Tanaka Y, Machi T, Nihei H, Kassell NF. Effect of subarachnoid hemorrhage on serotonin uptake and release in the rabbit basilar artery. Neurosurgery. 1991;28(3):387–92. discussion 92–3.

    CAS  PubMed  Google Scholar 

  70. Tang WH, Chen Z, Liu Z, Zhang JH, Xi G, Feng H. The effect of ecdysterone on cerebral vasospasm following experimental subarachnoid hemorrhage in vitro and in vivo. Neurol Res. 2008;30(6):571–80. doi:10.1179/174313208X297986.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Vorkapic P, Bevan JA, Bevan RD. Longitudinal in vivo and in vitro time-course study of chronic cerebrovasospasm in the rabbit basilar artery. Neurosurg Rev. 1991;14(3):215–9.

    CAS  PubMed  Google Scholar 

  72. Kwan AL, Lin CL, Yanamoto H, Howng SL, Kassell NF, Lee KS. Systemic administration of the potassium channel activator cromakalim attenuates cerebral vasospasm after experimental subarachnoid hemorrhage. Neurosurgery. 1998;42(2):347–50. discussion 50–1.

    CAS  PubMed  Google Scholar 

  73. Lin CL, Lo YC, Chang CZ, Kwan AL, Chen IJ, Howng SL. Prevention of cerebral vasospasm by a capsaicin derivative, glyceryl nonivamide, in an experimental model of subarachnoid hemorrhage. Surg Neurol. 2001;55(5):297–301.

    CAS  PubMed  Google Scholar 

  74. Kertmen H, Gurer B, Yilmaz ER, Arikok AT, Demirci A, Gokyaprak SM, et al. The effect of thiocolchicoside on cerebral vasospasm following experimental subarachnoid hemorrhage in the rabbit. Acta Neurochir (Wien). 2012;154(8):1431–6. doi:10.1007/s00701-012-1420-3.

    Google Scholar 

  75. Laslo AM, Eastwood JD, Pakkiri P, Chen F, Lee TY. CT perfusion-derived mean transit time predicts early mortality and delayed vasospasm after experimental subarachnoid hemorrhage. AJNR Am J Neuroradiol. 2008;29(1):79–85. doi:10.3174/ajnr.A0747.

    CAS  PubMed  Google Scholar 

  76. Murphy AM, Xenocostas A, Pakkiri P, Lee TY. Hemodynamic effects of recombinant human erythropoietin on the central nervous system after subarachnoid hemorrhage: reduction of microcirculatory impairment and functional deficits in a rabbit model. J Neurosurg. 2008;109(6):1155–64. doi:10.3171/JNS.2008.109.12.1155.

    PubMed  Google Scholar 

  77. Gabikian P, Clatterbuck RE, Eberhart CG, Tyler BM, Tierney TS, Tamargo RJ. Prevention of experimental cerebral vasospasm by intracranial delivery of a nitric oxide donor from a controlled-release polymer: toxicity and efficacy studies in rabbits and rats. Stroke. 2002;33(11):2681–6.

    PubMed  Google Scholar 

  78. Pan YX, Chen KF, Lin YX, Wu W, Zhou XM, Zhang XS, et al. Intracisternal administration of SB203580, a p38 mitogen-activated protein kinase inhibitor, attenuates cerebral vasospasm via inhibition of tumor-necrosis factor-alpha. J Clin Neurosci. 2013;20(5):726–30. doi:10.1016/j.jocn.2012.09.012.

    CAS  PubMed  Google Scholar 

  79. Ahmad I, Imaizumi S, Shimizu H, Kaminuma T, Ochiai N, Tajima M, et al. Development of calcitonin gene-related peptide slow-release tablet implanted in CSF space for prevention of cerebral vasospasm after experimental subarachnoid haemorrhage. Acta Neurochir (Wien). 1996;138(10):1230–40.

    CAS  Google Scholar 

  80. Kubota Y, Isotani E, Mizuno Y, Ohno K, Azuma H. Alterations of intracellular calcium concentration and nitric oxide generation in pulmonary artery endothelium after subarachnoid hemorrhage of the rabbit. Vascul Pharmacol. 2007;47(2–3):90–8. doi:10.1016/j.vph.2007.04.004.

    CAS  PubMed  Google Scholar 

  81. Mizuno Y, Isotani E, Ohno K, Nagai A, Imamura M, Azuma H. Involvement of accumulated NOS inhibitors and endothelin-1, enhanced arginase, and impaired DDAH activities in pulmonary dysfunction following subarachnoid hemorrhage in the rabbit. Vascul Pharmacol. 2008;48(1):21–31. doi:10.1016/j.vph.2007.11.002.

    CAS  PubMed  Google Scholar 

  82. Hong T, Wang Y, Wang HT, Wang H. Inhibitory effect of gap junction blockers on cerebral vasospasm. J Neurosurg. 2008;108(3):551–7. doi:10.3171/JNS/2008/108/3/0551.

    CAS  PubMed  Google Scholar 

  83. Tsurutani H, Ohkuma H, Suzuki S. Effects of thrombin inhibitor on thrombin-related signal transduction and cerebral vasospasm in the rabbit subarachnoid hemorrhage model. Stroke. 2003;34(6):1497–500. doi:10.1161/01.STR.0000070424.38138.30.

    CAS  PubMed  Google Scholar 

  84. Yanamoto H, Kikuchi H, Okamoto S, Nozaki K. Preventive effect of synthetic serine protease inhibitor, FUT-175, on cerebral vasospasm in rabbits. Neurosurgery. 1992;30(3):351–6. discussion 6–7.

    CAS  PubMed  Google Scholar 

  85. Black PM, Tzouras A, Foley L. Cerebrospinal fluid dynamics and hydrocephalus after experimental subarachnoid hemorrhage. Neurosurgery. 1985;17(1):57–62.

    CAS  PubMed  Google Scholar 

  86. Tuncer R. Experimental basilar artery spasm caused by autologous blood application: effects of clot removal and topical nicardipine. Acta Neurochir (Wien). 1993;121(1–2):72–5.

    CAS  Google Scholar 

  87. Yurt A, Ozer F, Selcuki M, Erturk AR, Gorgulu O. Effect of systemic parameters following experimental subarachnoid hemorrhage and cerebral vasospasm in rabbits by injection of blood into the subarachnoidal space. Neurosciences (Riyadh). 2010;15(1):15–20.

    Google Scholar 

  88. Ishiguro M, Puryear CB, Bisson E, Saundry CM, Nathan DJ, Russell SR, et al. Enhanced myogenic tone in cerebral arteries from a rabbit model of subarachnoid hemorrhage. Am J Physiol Heart Circ Physiol. 2002;283(6):H2217–25. doi:10.1152/ajpheart.00629.2002.

    CAS  PubMed  Google Scholar 

  89. Koide M, Nystoriak MA, Krishnamoorthy G, O’Connor KP, Bonev AD, Nelson MT, et al. Reduced Ca2+ spark activity after subarachnoid hemorrhage disables BK channel control of cerebral artery tone. J Cereb Blood Flow Metab. 2011;31(1):3–16. doi:10.1038/jcbfm.2010.143.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Laslo AM, Eastwood JD, Chen FX, Lee TY. Dynamic CT perfusion imaging in subarachnoid hemorrhage-related vasospasm. AJNR Am J Neuroradiol. 2006;27(3):624–31.

    CAS  PubMed  Google Scholar 

  91. Nelson RJ, Perry S, Burns AC, Roberts J, Pickard JD. The effects of hyponatraemia and subarachnoid haemorrhage on the cerebral vasomotor responses of the rabbit. J Cereb Blood Flow Metab. 1991;11(4):661–6. doi:10.1038/jcbfm.1991.118.

    CAS  PubMed  Google Scholar 

  92. Otsuji T, Endo S, Hirashima Y, Nishijima M, Takaku A. An experimental model of symptomatic vasospasm induced by oxyhemoglobin in rabbits. Stroke. 1994;25(3):657–62.

    CAS  PubMed  Google Scholar 

  93. Taplu A, Gokmen N, Erbayraktar S, Sade B, Erkan N, Karadibak K, et al. Effects of pressure- and volume-controlled inverse ratio ventilation on haemodynamic variables, intracranial pressure and cerebral perfusion pressure in rabbits: a model of subarachnoid haemorrhage under isoflurane anaesthesia. Eur J Anaesthesiol. 2003;20(9):690–6.

    CAS  PubMed  Google Scholar 

  94. Marbacher S, Andereggen L, Neuschmelting V, Widmer HR, von Gunten M, Takala J, et al. A new rabbit model for the study of early brain injury after subarachnoid hemorrhage. J Neurosci Methods. 2012;208(2):138–45. doi:10.1016/j.jneumeth.2012.05.010.

    PubMed  Google Scholar 

  95. Liu P, Liao X, Xiang J, Pan L, Ma L. Continuous intravertebral injection of fasudil hydrochloride in the treatment of cerebral vasospasm. Neurol India. 2011;59(2):161–7. doi:10.4103/0028-3886.79127.

    PubMed  Google Scholar 

  96. Kwan AL, Lin CL, Chang CZ, Wu HJ, Hwong SL, Jeng AY, et al. Continuous intravenous infusion of CGS 26303, an endothelin-converting enzyme inhibitor, prevents and reverses cerebral vasospasm after experimental subarachnoid hemorrhage. Neurosurgery. 2001;49(2):422–7. discussion 7–9.

    CAS  PubMed  Google Scholar 

  97. Strong MJ, Wolff AV, Wakayama I, Garruto RM. Aluminum-induced chronic myelopathy in rabbits. Neurotoxicology. 1991;12(1):9–21.

    CAS  PubMed  Google Scholar 

  98. Kusaka G, Kimura H, Kusaka I, Perkins E, Nanda A, Zhang JH. Contribution of Src tyrosine kinase to cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg. 2003;99(2):383–90. doi:10.3171/jns.2003.99.2.0383.

    CAS  PubMed  Google Scholar 

  99. Zhou C, Yamaguchi M, Kusaka G, Schonholz C, Nanda A, Zhang JH. Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24(4):419–31. doi:10.1097/00004647-200404000-00007.

    CAS  PubMed  Google Scholar 

  100. Kim CY, Paek SH, Seo BG, Kim JH, Han DH. Changes in vascular responses of the basilar artery to acetylcholine and endothelin-1 in an experimental rabbit vasospasm model. Acta Neurochir (Wien). 2003;145(7):571–7. doi:10.1007/s00701-003-0024-3.

    Google Scholar 

  101. Aydin MD, Kanat A, Yilmaz A, Cakir M, Emet M, Cakir Z, et al. The role of ischemic neurodegeneration of the nodose ganglia on cardiac arrest after subarachnoid hemorrhage: an experimental study. Exp Neurol. 2011;230(1):90–5. doi:10.1016/j.expneurol.2010.09.018.

    PubMed  Google Scholar 

  102. Gurelik M, Kayabas M, Karadag O, Goksel HM, Akyuz A, Topaktas S. Cervical spinal cord stimulation improves neurological dysfunction induced by cerebral vasospasm. Neuroscience. 2005;134(3):827–32. doi:10.1016/j.neuroscience.2005.04.062.

    CAS  PubMed  Google Scholar 

  103. Kawanabe Y, Masaki T, Hashimoto N. Involvement of phospholipase C in endothelin 1-induced stimulation of Ca2+ channels and basilar artery contraction in rabbits. J Neurosurg. 2006;105(2):288–93. doi:10.3171/jns.2006.105.2.288.

    CAS  PubMed  Google Scholar 

  104. Zhang Z, Nagata I, Kikuchi H, Xue JH, Sakai N, Sakai H, et al. Broad-spectrum and selective serine protease inhibitors prevent expression of platelet-derived growth factor-BB and cerebral vasospasm after subarachnoid hemorrhage: vasospasm caused by cisternal injection of recombinant platelet-derived growth factor-BB. Stroke. 2001;32(7):1665–72.

    CAS  PubMed  Google Scholar 

  105. Echigo R, Shimohata N, Karatsu K, Yano F, Kayasuga-Kariya Y, Fujisawa A, et al. Trehalose treatment suppresses inflammation, oxidative stress, and vasospasm induced by experimental subarachnoid hemorrhage. J Transl Med. 2012;10:80. doi:10.1186/1479-5876-10-80.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by JSPS KAKENHI (Grant Numbers 24791510, 25670624, and 26462164).

Compliance with Ethics Requirements

All institutional and national guidelines for the care of laboratory animals were followed.

Conflict of Interest

Yuichiro Kikkawa, Ryota Kurogi, and Tomio Sasaki declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichiro Kikkawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikkawa, Y., Kurogi, R. & Sasaki, T. The Single and Double Blood Injection Rabbit Subarachnoid Hemorrhage Model. Transl. Stroke Res. 6, 88–97 (2015). https://doi.org/10.1007/s12975-014-0375-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-014-0375-5

Keywords

Navigation