Skip to main content

Advertisement

Log in

The Effects of Poststroke Aerobic Exercise on Neuroplasticity: A Systematic Review of Animal and Clinical Studies

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Aerobic exercise may be a catalyst to promote neuroplasticity and recovery following stroke; however, the optimal methods to measure neuroplasticity and the effects of training parameters have not been fully elucidated. We conducted a systematic review and synthesis of clinical trials and studies in animal models to determine (1) the extent to which aerobic exercise influences poststroke markers of neuroplasticity, (2) the optimal parameters of exercise required to induce beneficial effects, and (3) consistent outcomes in animal models that could help inform the design of future trials. Synthesized findings show that forced exercise at moderate to high intensity increases brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I), nerve growth factor (NGF), and synaptogenesis in multiple brain regions. Dendritic branching was most responsive to moderate rather than intense training. Disparity between clinical stroke and stroke models (timing of initiation of exercise, age, gender) and clinically viable methods to measure neuroplasticity are some of the areas that should be addressed in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

AE:

Aerobic exercise

BDNF:

Brain-derived neurotrophic factor

EEG:

Electroencephalography

FE:

Forced exercise

fMRI:

Functional magnetic resonance imaging

GAP43:

Growth-associated protein-43

IGF-I:

Insulin-like growth factor-I

NGF:

Nerve growth factor

MAP2:

Microtubule-associated protein 2

MEG:

Magnetoencephalography

PET:

Positron emission tomography

VE:

Voluntary exercise

VEGF:

Vascular endothelial growth factor

References

  1. Towfighi A, Saver JL. Stroke declines from third to fourth leading cause of death in the United States: historical perspective and challenges ahead. Stroke. 2011;42(8):2351–5. doi:10.1161/STROKEAHA.111.621904.

    Article  PubMed  Google Scholar 

  2. Hennerici MG, Kern R, Szabo K. Non-pharmacological strategies for the treatment of acute ischaemic stroke. Lancet Neurol. 2013;12(6):572–84. doi:10.1016/S1474-4422(13)70091-7.

    Article  PubMed  Google Scholar 

  3. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377(9778):1693–702. doi:10.1016/S0140-6736(11)60325-5.

    Article  PubMed  Google Scholar 

  4. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72. doi:10.1038/nrn2735.

    Article  CAS  PubMed  Google Scholar 

  5. Carmichael ST. Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol. 2006;59(5):735–42. doi:10.1002/ana.20845.

    Article  CAS  PubMed  Google Scholar 

  6. Ploughman M, Windle V, MacLellan CL, White N, Dore JJ, Corbett D. Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke. 2009;40(4):1490–5. doi:10.1161/STROKEAHA.108.531806.

    Article  CAS  PubMed  Google Scholar 

  7. MacLellan CL, Keough MB, Granter-Button S, Chernenko GA, Butt S, Corbett D. A critical threshold of rehabilitation involving brain-derived neurotrophic factor is required for poststroke recovery. Neurorehabil Neural Repair. 2011;25(8):740–8. doi:10.1177/1545968311407517.

    Article  PubMed  Google Scholar 

  8. De Smedt A, Brouns R, Uyttenboogaart M, De Raedt S, Moens M, Wilczak N, et al. Insulin-like growth factor I serum levels influence ischemic stroke outcome. Stroke. 2011;42(8):2180–5. doi:10.1161/STROKEAHA.110.600783.

    Article  PubMed  Google Scholar 

  9. Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013;14(1):7–23. doi:10.1038/nrn3379.

    Article  CAS  PubMed  Google Scholar 

  10. Nudo RJ. Recovery after brain injury: mechanisms and principles. Front Hum Neurosci. 2013;7:887. doi:10.3389/fnhum.2013.00887.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Angevaren M, Aufdemkampe G, Verhaar HJ, Aleman A, Vanhees L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. 2008;3, CD005381. doi:10.1002/14651858.CD005381.pub3.

    PubMed  Google Scholar 

  12. Mackay-Lyons M, Macko R, Eng J, Billinger S, Hafer-Macko C, Suskin N, Tang A, Giacomantonio N, Prior P, Che M, Dromerick A, Thornton M, Reid R, Unsworth K, LaGrand C, Firth W. Aerobic exercise recommendations to optimize best practices in care after stroke. Halifax; 2012. http://strokebestpractices.ca/wp-content/uploads/2013/07/AEROBICS-FINAL-July-2013.pdf.

  13. Coelho FG, Gobbi S, Andreatto CA, Corazza DI, Pedroso RV, Santos-Galduroz RF. Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): a systematic review of experimental studies in the elderly. Arch Gerontol Geriatr. 2013;56(1):10–5. doi:10.1016/j.archger.2012.06.003.

    Article  CAS  PubMed  Google Scholar 

  14. Gatti R, De Palo EF, Antonelli G, Spinella P. IGF-I/IGFBP system: metabolism outline and physical exercise. J Endocrinol Invest. 2012;35(7):699–707. doi:10.3275/8456.

    CAS  PubMed  Google Scholar 

  15. Hotting K, Roder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev. 2013;37(9 Pt B):2243–57. doi:10.1016/j.neubiorev.2013.04.005.

    Article  PubMed  Google Scholar 

  16. Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci. 2006;61(11):1166–70.

    Article  PubMed  Google Scholar 

  17. Smith PJ, Blumenthal JA, Hoffman BM, Cooper H, Strauman TA, Welsh-Bohmer K, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72(3):239–52. doi:10.1097/PSY.0b013e3181d14633.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Pang MY, Charlesworth SA, Lau RW, Chung RC. Using aerobic exercise to improve health outcomes and quality of life in stroke: evidence-based exercise prescription recommendations. Cerebrovasc Dis. 2013;35(1):7–22. doi:10.1159/000346075.

    Article  PubMed  Google Scholar 

  19. Dobkin BH. Training and exercise to drive poststroke recovery. Nat Clin Pract Neurol. 2008;4(2):76–85. doi:10.1038/ncpneuro0709.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Mang CS, Campbell KL, Ross CJ, Boyd LA. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Phys Ther. 2013;93(12):1707–16. doi:10.2522/ptj.20130053.

    Article  PubMed Central  PubMed  Google Scholar 

  21. McDonnell MN, Smith AE, Mackintosh SF. Aerobic exercise to improve cognitive function in adults with neurological disorders: a systematic review. Arch Phys Med Rehabil. 2011;92(7):1044–52. doi:10.1016/j.apmr.2011.01.021.

    Article  PubMed  Google Scholar 

  22. Cumming TB, Tyedin K, Churilov L, Morris ME, Morris ME. The effect of physical activity on cognitive function after stroke: a systematic review. Int Psychogeriatr. 2012;24(4):557–67. doi:10.1017/S1041610211001980.

    Article  PubMed  Google Scholar 

  23. Romero JR, Babikian VL, Katz DI, Finklestein SP. Neuroprotection and stroke rehabilitation: modulation and enhancement of recovery. Behav Neurol. 2006;17(1):17–24.

    Article  PubMed  Google Scholar 

  24. Zhang F, Wu Y, Jia J. Exercise preconditioning and brain ischemic tolerance. Neuroscience. 2011;177:170–6. doi:10.1016/j.neuroscience.2011.01.018.

    Article  CAS  PubMed  Google Scholar 

  25. Austin MW, Ploughman M, Glynn L, Corbett D. Aerobic exercise effects on neuroprotection and brain repair following stroke: a systematic review and perspective. Neurosci Res. 2014. doi:10.1016/j.neures.2014.06.007.

  26. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100. doi:10.1371/journal.pmed.1000100.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Medbo JI, Mohn AC, Tabata I, Bahr R, Vaage O, Sejersted OM. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol (1985). 1988;64(1):50–60.

    CAS  Google Scholar 

  28. Risedal A, Mattsson B, Dahlqvist P, Nordborg C, Olsson T, Johansson BB. Environmental influences on functional outcome after a cortical infarct in the rat. Brain Res Bull. 2002;58(3):315–21.

    Article  PubMed  Google Scholar 

  29. Ploughman M, Granter-Button S, Chernenko G, Tucker BA, Mearow KM, Corbett D. Endurance exercise regimens induce differential effects on brain-derived neurotrophic factor, synapsin-I and insulin-like growth factor I after focal ischemia. Neuroscience. 2005;136(4):991–1001. doi:10.1016/j.neuroscience.2005.08.037.

    Article  CAS  PubMed  Google Scholar 

  30. Kim MW, Bang MS, Han TR, Ko YJ, Yoon BW, Kim JH, et al. Exercise increased BDNF and trkB in the contralateral hemisphere of the ischemic rat brain. Brain Res. 2005;1052(1):16–21. doi:10.1016/j.brainres.2005.05.070.

    Article  CAS  PubMed  Google Scholar 

  31. Ploughman M, Granter-Button S, Chernenko G, Attwood Z, Tucker BA, Mearow KM, et al. Exercise intensity influences the temporal profile of growth factors involved in neuronal plasticity following focal ischemia. Brain Res. 2007;1150:207–16. doi:10.1016/j.brainres.2007.02.065.

    Article  CAS  PubMed  Google Scholar 

  32. Ploughman M, Attwood Z, White N, Dore JJ, Corbett D. Endurance exercise facilitates relearning of forelimb motor skill after focal ischemia. Eur J Neurosci. 2007;25(11):3453–60. doi:10.1111/j.1460-9568.2007.05591.x.

    Article  PubMed  Google Scholar 

  33. Maldonado MA, Allred RP, Felthauser EL, Jones TA. Motor skill training, but not voluntary exercise, improves skilled reaching after unilateral ischemic lesions of the sensorimotor cortex in rats. Neurorehabil Neural Repair. 2008;22(3):250–61. doi:10.1177/1545968307308551.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Seo HG, Kim DY, Park HW, Lee SU, Park SH. Early motor balance and coordination training increased synaptophysin in subcortical regions of the ischemic rat brain. J Korean Med Sci. 2010;25(11):1638–45. doi:10.3346/jkms.2010.25.11.1638.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Chang HC, Yang YR, Wang SG, Wang RY. Effects of treadmill training on motor performance and extracellular glutamate level in striatum in rats with or without transient middle cerebral artery occlusion. Behav Brain Res. 2009;205(2):450–5. doi:10.1016/j.bbr.2009.07.033.

    Article  CAS  PubMed  Google Scholar 

  36. Ke Z, Yip SP, Li L, Zheng XX, Tong KY. The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery: a rat brain ischemia model. PLoS One. 2011;6(2):e16643. doi:10.1371/journal.pone.0016643.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Quirie A, Hervieu M, Garnier P, Demougeot C, Mossiat C, Bertrand N, et al. Comparative effect of treadmill exercise on mature BDNF production in control versus stroke rats. PLoS One. 2012;7(9):e44218. doi:10.1371/journal.pone.0044218.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Sakakima H, Khan M, Dhammu TS, Shunmugavel A, Yoshida Y, Singh I, et al. Stimulation of functional recovery via the mechanisms of neurorepair by S-nitrosoglutathione and motor exercise in a rat model of transient cerebral ischemia and reperfusion. Restor Neurol Neurosci. 2012;30(5):383–96. doi:10.3233/RNN-2012-110209.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Kim G, Kim E. The effects of antecedent exercise on motor function recovery and brain-derived neurotrophic factor expression after focal cerebral ischemia in rats. J Phys Ther Sci. 2013;25(5):553–6. doi:10.1589/jpts.25.553.

    PubMed Central  PubMed  Google Scholar 

  40. Zhang QW, Deng XX, Sun X, Xu JX, Sun FY. Exercise promotes axon regeneration of newborn striatonigral and corticonigral projection neurons in rats after ischemic stroke. PLoS One. 2013;8(11):e80139. doi:10.1371/journal.pone.0080139.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Shih PC, Yang YR, Wang RY. Effects of exercise intensity on spatial memory performance and hippocampal synaptic plasticity in transient brain ischemic rats. PLoS One. 2013;8(10):e78163. doi:10.1371/journal.pone.0078163.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lan X, Zhang M, Yang W, Zheng Z, Wu Y, Zeng Q, et al. Effect of treadmill exercise on 5-HT, 5-HT1A receptor and brain derived neurotrophic factor in rats after permanent middle cerebral artery occlusion. Neurol Sci. 2013. doi:10.1007/s10072-013-1599-y.

    PubMed  Google Scholar 

  43. Chang HC, Yang YR, Wang PS, Kuo CH, Wang RY. Insulin-like growth factor I signaling for brain recovery and exercise ability in brain ischemic rats. Med Sci Sports Exerc. 2011;43(12):2274–80. doi:10.1249/MSS.0b013e318223b5d9.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang L, Hu X, Luo J, Li L, Chen X, Huang R, et al. Physical exercise improves functional recovery through mitigation of autophagy, attenuation of apoptosis and enhancement of neurogenesis after MCAO in rats. BMC Neurosci. 2013;14:46. doi:10.1186/1471-2202-14-46.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Dahlqvist P, Ronnback A, Risedal A, Nergardh R, Johansson IM, Seckl JR, et al. Effects of postischemic environment on transcription factor and serotonin receptor expression after permanent focal cortical ischemia in rats. Neuroscience. 2003;119(3):643–52.

    Article  CAS  PubMed  Google Scholar 

  46. Chung JY, Kim MW, Bang MS, Kim M. The effect of exercise on trkA in the contralateral hemisphere of the ischemic rat brain. Brain Res. 2010;1353:187–93. doi:10.1016/j.brainres.2010.06.057.

    Article  CAS  PubMed  Google Scholar 

  47. Matsuda F, Sakakima H, Yoshida Y. The effects of early exercise on brain damage and recovery after focal cerebral infarction in rats. Acta Physiol (Oxf). 2011;201(2):275–87. doi:10.1111/j.1748-1708.2010.02174.x.

    Article  CAS  Google Scholar 

  48. Mizutani K, Sonoda S, Yamada K, Beppu H, Shimpo K. Alteration of protein expression profile following voluntary exercise in the perilesional cortex of rats with focal cerebral infarction. Brain Res. 2011;1416:61–8. doi:10.1016/j.brainres.2011.08.012.

    Article  CAS  PubMed  Google Scholar 

  49. Marin R, Williams A, Hale S, Burge B, Mense M, Bauman R, et al. The effect of voluntary exercise exposure on histological and neurobehavioral outcomes after ischemic brain injury in the rat. Physiol Behav. 2003;80(2–3):167–75.

    Article  CAS  PubMed  Google Scholar 

  50. Briones TL, Suh E, Jozsa L, Hattar H, Chai J, Wadowska M. Behaviorally-induced ultrastructural plasticity in the hippocampal region after cerebral ischemia. Brain Res. 2004;997(2):137–46.

    Article  CAS  PubMed  Google Scholar 

  51. Briones TL, Suh E, Jozsa L, Rogozinska M, Woods J, Wadowska M. Changes in number of synapses and mitochondria in presynaptic terminals in the dentate gyrus following cerebral ischemia and rehabilitation training. Brain Res. 2005;1033(1):51–7. doi:10.1016/j.brainres.2004.11.017.

    Article  CAS  PubMed  Google Scholar 

  52. Takamatsu Y, Ishida A, Hamakawa M, Tamakoshi K, Jung CG, Ishida K. Treadmill running improves motor function and alters dendritic morphology in the striatum after collagenase-induced intracerebral hemorrhage in rats. Brain Res. 2010;1355:165–73. doi:10.1016/j.brainres.2010.07.070.

    Article  CAS  PubMed  Google Scholar 

  53. Liu N, Huang H, Lin F, Chen A, Zhang Y, Chen R, et al. Effects of treadmill exercise on the expression of netrin-1 and its receptors in rat brain after cerebral ischemia. Neuroscience. 2011;194:349–58. doi:10.1016/j.neuroscience.2011.07.037.

    Article  CAS  PubMed  Google Scholar 

  54. Shimada H, Hamakawa M, Ishida A, Tamakoshi K, Nakashima H, Ishida K. Low-speed treadmill running exercise improves memory function after transient middle cerebral artery occlusion in rats. Behav Brain Res. 2013;243:21–7. doi:10.1016/j.bbr.2012.12.018.

    Article  PubMed  Google Scholar 

  55. Enzinger C, Dawes H, Johansen-Berg H, Wade D, Bogdanovic M, Collett J, et al. Brain activity changes associated with treadmill training after stroke. Stroke. 2009;40(7):2460–7. doi:10.1161/STROKEAHA.109.550053.

    Article  PubMed  Google Scholar 

  56. Luft AR, Macko RF, Forrester LW, Villagra F, Ivey F, Sorkin JD, et al. Treadmill exercise activates subcortical neural networks and improves walking after stroke: a randomized controlled trial. Stroke. 2008;39(12):3341–50. doi:10.1161/STROKEAHA.108.527531.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Belur PK, Chang JJ, He S, Emanuel BA, Mack WJ. Emerging experimental therapies for intracerebral hemorrhage: targeting mechanisms of secondary brain injury. Neurosurg Focus. 2013;34(5):E9. doi:10.3171/2013.2.FOCUS1317.

    Article  PubMed  Google Scholar 

  58. Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30(9):464–72. doi:10.1016/j.tins.2007.06.011.

    Article  CAS  PubMed  Google Scholar 

  59. Chung JY, Kim MW, Bang MS, Kim M. Increased expression of neurotrophin 4 following focal cerebral ischemia in adult rat brain with treadmill exercise. PLoS One. 2013;8(3):e52461. doi:10.1371/journal.pone.0052461.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Je HS, Yang F, Ji Y, Potluri S, Fu XQ, Luo ZG, et al. ProBDNF and mature BDNF as punishment and reward signals for synapse elimination at mouse neuromuscular junctions. J Neurosci. 2013;33(24):9957–62. doi:10.1523/JNEUROSCI.0163-13.2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Rossini PM, Calautti C, Pauri F, Baron JC. Post-stroke plastic reorganisation in the adult brain. Lancet Neurol. 2003;2(8):493–502.

    Article  PubMed  Google Scholar 

  62. Lazaridou A, Astrakas L, Mintzopoulos D, Khanchiceh A, Singhal A, Moskowitz M, et al. fMRI as a molecular imaging procedure for the functional reorganization of motor systems in chronic stroke. Mol Med Rep. 2013;8(3):775–9. doi:10.3892/mmr.2013.1603.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil Neural Repair. 2012;26(8):923–31. doi:10.1177/1545968312440745.

    Article  PubMed  Google Scholar 

  64. Canadian Stroke Network. The quality of stroke care in Canada. Ottawa, Ontario, Canada;2011.

  65. Centre for Disease Control: Prevention. Stroke facts. National Center for Chronic Disease Prevention and Health Promotion, Atlanta, GA, USA. 2013. http://www.cdc.gov/stroke/facts.htm.

  66. Chavez-Valdez R, Martin LJ, Razdan S, Gauda EB, Northington FJ. Sexual dimorphism in BDNF signaling after neonatal hypoxia-ischemia and treatment with necrostatin-1. Neuroscience. 2014;260:106–19. doi:10.1016/j.neuroscience.2013.12.023.

    Article  CAS  PubMed  Google Scholar 

  67. Smith AL, Alexander M, Rosenkrantz TS, Sadek ML, Fitch RH. Sex differences in behavioral outcome following neonatal hypoxia ischemia: insights from a clinical meta-analysis and a rodent model of induced hypoxic ischemic brain injury. Exp Neurol. 2014;254C:54–67. doi:10.1016/j.expneurol.2014.01.003.

    Article  Google Scholar 

  68. Timaru-Kast R, Luh C, Gotthardt P, Huang C, Schafer MK, Engelhard K, et al. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice. PLoS One. 2012;7(8):e43829. doi:10.1371/journal.pone.0043829.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Jaerve A, Schiwy N, Schmitz C, Mueller HW. Differential effect of aging on axon sprouting and regenerative growth in spinal cord injury. Exp Neurol. 2011;231(2):284–94. doi:10.1016/j.expneurol.2011.07.002.

    Article  CAS  PubMed  Google Scholar 

  70. Bramlett HM. Special issue of Translational Stroke: importance of sex in the pathophysiology and treatment of acute CNS repair. Transl Stroke Res. 2013;4(4):379–80. doi:10.1007/s12975-013-0264-3.

    Article  PubMed  Google Scholar 

  71. Persson N, Lavebratt C, Wahlin A. Synergy effects of HbA1c and variants of APOE and BDNFVal66Met explains individual differences in memory performance. Neurobiol Learn Mem. 2013;106:274–82. doi:10.1016/j.nlm.2013.08.017.

    Article  CAS  PubMed  Google Scholar 

  72. Mackay-Lyons M, McDonald A, Matheson J, Eskes G, Klus MA. Dual effects of body-weight supported treadmill training on cardiovascular fitness and walking ability early after stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2013;27(7):644–53. doi:10.1177/1545968313484809.

    Article  PubMed  Google Scholar 

  73. Stoller O, de Bruin ED, Knols RH, Hunt KJ. Effects of cardiovascular exercise early after stroke: systematic review and meta-analysis. BMC Neurol. 2012;12:45. doi:10.1186/1471-2377-12-45.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci. 2004;24(5):1245–54. doi:10.1523/JNEUROSCI.3834-03.2004.

    Article  CAS  PubMed  Google Scholar 

  75. Eisenberg DP, Ianni AM, Wei SM, Kohn PD, Kolachana B, Apud J, et al. Hippocampal dysfunction in schizophrenia: association with brain-derived neurotrophic factor genotype. Mol Psychiatry. 2013;18(6):631. doi:10.1038/mp.2013.53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Corominas-Roso M, Ramos-Quiroga JA, Ribases M, Sanchez-Mora C, Palomar G, Valero S, et al. Decreased serum levels of brain-derived neurotrophic factor in adults with attention-deficit hyperactivity disorder. Int J Neuropsychopharmacol. 2013;30:1–9. doi:10.1017/S1461145712001629.

    Google Scholar 

  77. Bejot Y, Mossiat C, Giroud M, Prigent-Tessier A, Marie C. Circulating and brain BDNF levels in stroke rats. Relevance to clinical studies. PLoS One. 2011;6(12):e29405.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Cho HC, Kim J, Kim S, Son YH, Lee N, Jung SH. The concentrations of serum, plasma and platelet BDNF are all increased by treadmill VO(2)max performance in healthy college men. Neurosci Lett. 2012;519(1):78–83. doi:10.1016/j.neulet.2012.05.025.

    Article  CAS  PubMed  Google Scholar 

  79. Araya AV, Orellana X, Godoy D, Soto L, Fiedler J. Effect of exercise on circulating levels of brain-derived neurotrophic factor (BDNF) in overweight and obese subjects. Horm Metab Res. 2013;45(7):541–4. doi:10.1055/s-0032-1333237.

    Article  CAS  PubMed  Google Scholar 

  80. Voss MW, Erickson KI, Prakash RS, Chaddock L, Kim JS, Alves H, et al. Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav Immun. 2013;28:90–9. doi:10.1016/j.bbi.2012.10.021.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Bansi J, Bloch W, Gamper U, Kesselring J. Training in MS: influence of two different endurance training protocols (aquatic versus overland) on cytokine and neurotrophin concentrations during three week randomized controlled trial. Mult Scler. 2013;19(5):613–21. doi:10.1177/1352458512458605.

    Article  CAS  PubMed  Google Scholar 

  82. Coelho FM, Pereira DS, Lustosa LP, Silva JP, Dias JMD, Dias RCD, et al. Physical therapy intervention (PTI) increases plasma brain-derived neurotrophic factor (BDNF) levels in non-frail and pre-frail elderly women. Arch Gerontol Geriatr. 2012;54(3):415–20. doi:10.1016/j.archger.2011.05.014.

    Article  CAS  PubMed  Google Scholar 

  83. Liepert J. Motor cortex excitability in stroke before and after constraint-induced movement therapy. Cogn Behav Neurol. 2006;19(1):41–7. doi:10.1097/00146965-200603000-00005.

    Article  PubMed  Google Scholar 

  84. Yin DZ, Song F, Xu DR, Peterson BS, Sun LM, Men WW, et al. Patterns in cortical connectivity for determining outcomes in hand function after subcortical stroke. PloS One. 2012;7(12):e52727. doi:10.1371/journal.pone.0052727.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Rossini PM, Dal Forno G. Integrated technology for evaluation of brain function and neural plasticity. Phys Med Rehabil Clin N Am. 2004;15(1):263–306.

    Article  PubMed  Google Scholar 

  86. Thiel A, Anglade C, Hartmann A, Heiss W. Imaging correlates of rTMS treatment for post-stroke aphasia: a randomized controlled study. Stroke. 2013;44(12):E178–E.

    Google Scholar 

  87. De Boissezon X, Marie N, Castel-Lacanal E, Marque P, Bezy C, Gros H, et al. Good recovery from aphasia is also supported by right basal ganglia: a longitudinal controlled PET study. EJPRM-ESPRM 2008 award winner. Eur J Phys Rehab Med. 2009;45(4):547–58.

    Google Scholar 

  88. Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A. 2000;97(16):9226–33. doi:10.1073/pnas.97.16.9226.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Backer MV, Levashova Z, Patel V, Jehning BT, Claffey K, Blankenberg FG, et al. Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med. 2007;13(4):504–9. doi:10.1038/Nm1522.

    Article  CAS  PubMed  Google Scholar 

  90. Fan F, Zhu C, Chen H, Qin W, Ji X, Wang L, et al. Dynamic brain structural changes after left hemisphere subcortical stroke. Hum Brain Mapp. 2013;34(8):1872–81. doi:10.1002/hbm.22034.

    Article  PubMed  Google Scholar 

  91. Kantak SS, Winstein CJ. Learning-performance distinction and memory processes for motor skills: a focused review and perspective. Behav Brain Res. 2012;228(1):219–31. doi:10.1016/j.bbr.2011.11.028.

    Article  PubMed  Google Scholar 

  92. Koopman AD, Eken MM, van Bezeij T, Valent LJ, Houdijk H. Does clinical rehabilitation impose sufficient cardiorespiratory strain to improve aerobic fitness? J Rehabil Med. 2013;45(1):92–8. doi:10.2340/16501977-1072.

    Article  PubMed  Google Scholar 

  93. MacKay-Lyons MJ, Makrides L. Cardiovascular stress during a contemporary stroke rehabilitation program: is the intensity adequate to induce a training effect? Arch Phys Med Rehabil. 2002;83(10):1378–83.

    Article  PubMed  Google Scholar 

  94. Williams G, Kahn M, Randall A. Strength training for walking in neurologic rehabilitation is not task specific: a focused review. Am J Phys Med Rehabil. 2014. doi:10.1097/PHM.0000000000000058.

    Google Scholar 

Download references

Acknowledgments

We acknowledge the work of Chelsea Harris, Stephen Hogan, and Michael Monks in obtaining and cataloguing articles.

Conflict of Interest

All authors declare that they have no conflicts of interest.

Compliance with Ethical Requirements

This article is a synthesis of human and animal study findings. Studies included in the review identified that they were in accordance with institutional and national guidelines for clinical and animal research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Ploughman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ploughman, M., Austin, M.W., Glynn, L. et al. The Effects of Poststroke Aerobic Exercise on Neuroplasticity: A Systematic Review of Animal and Clinical Studies. Transl. Stroke Res. 6, 13–28 (2015). https://doi.org/10.1007/s12975-014-0357-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-014-0357-7

Keywords

Navigation