Skip to main content

Advertisement

Log in

Voltage-Gated Potassium Channels at the Crossroads of Neuronal Function, Ischemic Tolerance, and Neurodegeneration

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Voltage-gated potassium (Kv) channels are widely expressed in the central and peripheral nervous system and are crucial mediators of neuronal excitability. Importantly, these channels also actively participate in cellular and molecular signaling pathways that regulate the life and death of neurons. Injury-mediated increased K+ efflux through Kv2.1 channels promotes neuronal apoptosis, contributing to widespread neuronal loss in neurodegenerative disorders such as Alzheimer's disease and stroke. In contrast, some forms of neuronal activity can dramatically alter Kv2.1 channel phosphorylation levels and influence their localization. These changes are normally accompanied by modifications in channel voltage dependence, which may be neuroprotective within the context of ischemic injury. Kv1 and Kv7 channel dysfunction leads to neuronal hyperexcitability that critically contributes to the pathophysiology of human clinical disorders such as episodic ataxia and epilepsy. This review summarizes the neurotoxic, neuroprotective, and neuroregulatory roles of Kv channels and highlights the consequences of Kv channel dysfunction on neuronal physiology. The studies described in this review thus underscore the importance of normal Kv channel function in neurons and emphasize the therapeutic potential of targeting Kv channels in the treatment of a wide range of neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yellen G. The voltage-gated potassium channels and their relatives. Nature. 2002;419(6902):35–42.

    CAS  PubMed  Google Scholar 

  2. Guan D, Lee J, Higgs M, Spain WJ, Foehring RC. Functional roles of Kv1 channels in neocortical pyramidal neurons. J Neurophys. 2007;97(3):1931–40.

    CAS  Google Scholar 

  3. Guan D, Armstrong WE, Foehring RC. Kv2 channels regulate firing rate in pyramidal neurons from rat sensorimotor cortex. J Physiol. 2013;591(19):4807–25.

    Google Scholar 

  4. Johnston J, Forsythe ID, Kopp–Scheinpflug C. Symposium review: going native: voltage-gated potassium channels controlling neuronal excitability. J Physiol. 2010;588(17):3187–200.

    CAS  PubMed  Google Scholar 

  5. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, Mckinnon D, Pardo LA, et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev. 2005;57(4):473–508.

    CAS  PubMed  Google Scholar 

  6. Schulte U, Thumfart J-O, Klöcker N, Sailer CA, Bildl W, Biniossek M, et al. The epilepsy-linked Lgi1 protein assembles into presynaptic Kv1 channels and inhibits inactivation by Kvβ1. Neuron. 2006;49(5):697–706.

    CAS  PubMed  Google Scholar 

  7. Imbrici P, D'Adamo MC, Kullmann DM, Pessia M. Episodic ataxia type 1 mutations in the KCNA1 gene impair the fast inactivation properties of the human potassium channels Kv1.4–1.1/Kvβ1.1 and Kv1.4–1.1/Kvβ1.2. Eur J Neurosci. 2006;24(11):3073–83.

    PubMed  Google Scholar 

  8. McKeown L, Swanton L, Robinson P, Jones OT. Surface expression and distribution of voltage-gated potassium channels in neurons (review). Mol Membr Biol. 2008;25(4):332–43.

    CAS  PubMed  Google Scholar 

  9. Park K-S, Mohapatra DP, Misonou H, Trimmer JS. Graded regulation of the Kv2.1 potassium channel by variable phosphorylation. Science. 2006;313(5789):976–9.

    CAS  PubMed  Google Scholar 

  10. Benson MD, Li Q-J, Kieckhafer K, Dudek D, Whorton MR, Sunahara RK, et al. SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5. Proc Natl Acad Sci. 2007;104(6):1805–10.

    CAS  PubMed  Google Scholar 

  11. Murakoshi H, Shi G, Scannevin RH, Trimmer JS. Phosphorylation of the Kv2.1 K+ channel alters voltage-dependent activation. Mol Pharmacol. 1997;52(5):821–8.

    CAS  PubMed  Google Scholar 

  12. Brown DA, Passmore GM. Neural KCNQ (Kv7) channels. Br J Pharmacol. 2009;156(8):1185–95.

    CAS  PubMed  Google Scholar 

  13. Brew HM, Hallows JL, Tempel BL. Hyperexcitability and reduced low threshold potassium currents in auditory neurons of mice lacking the channel subunit Kv1.1. J Physiol. 2003;548(1):1–20.

    CAS  PubMed  Google Scholar 

  14. Du J, Haak LL, Phillips-Tansey E, Russell JT, McBain CJ. Frequency-dependent regulation of rat hippocampal somato-dendritic excitability by the K+ channel subunit Kv2.1. J Physiol. 2000;522(1):19–31.

    CAS  PubMed  Google Scholar 

  15. Malin SA, Nerbonne JM. Delayed rectifier K+ currents, IK, are encoded by Kv2 α-subunits and regulate tonic firing in mammalian sympathetic neurons. J Neurosci. 2002;22(23):10094–105.

    CAS  PubMed  Google Scholar 

  16. Misonou H, Mohapatra DP, Menegola M, Trimmer JS. Calcium- and metabolic state-dependent modulation of the voltage-dependent Kv2.1 channel regulates neuronal excitability in response to ischemia. The. J Neurosci. 2005;25(48):11184–93.

    CAS  PubMed  Google Scholar 

  17. Mohapatra DP, Misonou H, Sheng-Jun P, Held JE, Surmeier DJ, Trimmer JS. Regulation of intrinsic excitability in hippocampal neurons by activity-dependent modulation of the Kv2.1 potassium channel. Channels. 2009;3(1):46–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Choi DW. Ischemia-induced neuronal apoptosis. Curr Opin Neurobiol. 1996;6(5):667–72.

    CAS  PubMed  Google Scholar 

  19. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267(5203):1456–62.

    CAS  PubMed  Google Scholar 

  20. Ferrer I, Friguls B, Dalfo E, Justicia C, Planas A. Caspase–dependent and caspase–independent signalling of apoptosis in the penumbra following middle cerebral artery occlusion in the adult rat. Neuropathol Appl Neurobiol. 2003;29(5):472–81.

    CAS  PubMed  Google Scholar 

  21. Lobysheva NV, Tonshin AA, Selin AA, Yaguzhinsky LS, Nartsissov YR. Diversity of neurodegenerative processes in the model of brain cortex tissue ischemia. Neurochem Int. 2009;54(5):322–9.

    CAS  PubMed  Google Scholar 

  22. Linnik MD, Zobrist RH, Hatfield MD. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke. 1993;24(12):2002–8.

    CAS  PubMed  Google Scholar 

  23. Kerr JF. Shrinkage necrosis: a distinct mode of cellular death. J Pathol. 1971;105(1):13–20.

    CAS  PubMed  Google Scholar 

  24. Bortner CD, Hughes FM, Cidlowski JA. A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem. 1997;272(51):32436–42.

    CAS  PubMed  Google Scholar 

  25. Bortner CD, Cidlowski JA. Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes. Am J Physiol Cell Physiol. 1996;271(3):C950–C61.

    CAS  Google Scholar 

  26. Bortner CD, Cidlowski JA. A necessary role for cell shrinkage in apoptosis. Biochem Pharmacol. 1998;56(12):1549–59.

    CAS  PubMed  Google Scholar 

  27. Beauvais F, Michel L, Dubertret L. Human eosinophils in culture undergo a striking and rapid shrinkage during apoptosis. Role of K+ channels. J Leukoc Biol. 1995;57(6):851–5.

    CAS  PubMed  Google Scholar 

  28. McCarthy JV, Cotter TG. Cell shrinkage and apoptosis: a role for potassium and sodium ion efflux. Cell Death Differ. 1997;4(8):756–70.

    CAS  PubMed  Google Scholar 

  29. Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci. 2000;97(17):9487–92.

    CAS  PubMed  Google Scholar 

  30. Yu SP, Choi DW. Ions, cell volume, and apoptosis. Proc Natl Acad Sci. 2000;97(17):9360–2.

    CAS  PubMed  Google Scholar 

  31. Benson R, Heer S, Dive C, Watson A. Characterization of cell volume loss in CEM-C7A cells during dexamethasone-induced apoptosis. Am J Physiol Cell Physiol. 1996;270(4):C1190–C203.

    CAS  Google Scholar 

  32. Hernández-Enríquez B, Guemez-Gamboa A, Morán J. Reactive oxygen species are related to ionic fluxes and volume decrease in apoptotic cerebellar granule neurons: role of NOX enzymes. J Neurochem. 2011;117(4):654–64.

    PubMed  Google Scholar 

  33. Hughes FM, Bortner CD, Purdy GD, Cidlowski JA. Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J Biol Chem. 1997;272(48):30567–76.

    CAS  PubMed  Google Scholar 

  34. Dallaporta B, Hirsch T, Susin SA, Zamzami N, Larochette N, Brenner C, et al. Potassium leakage during the apoptotic degradation phase. J Immunol. 1998;160(11):5605–15.

    CAS  PubMed  Google Scholar 

  35. Cain K, Langlais C, Sun X-M, Brown DG, Cohen GM. Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J Biol Chem. 2001;276(45):41985–90.

    CAS  PubMed  Google Scholar 

  36. Yang Q, Yan D, Wang Y. K+ regulates DNA binding of transcription factors to control gene expression related to neuronal apoptosis. Neuroreport. 2006;17(11):1199–204.

    CAS  PubMed  Google Scholar 

  37. Yu SP, Yeh C-H, Sensi SL, Gwag BJ, Canzoniero LM, Farhangrazi ZS, et al. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science. 1997;278(5335):114–7.

    CAS  PubMed  Google Scholar 

  38. Barbiero G, Duranti F, Bonelli G, Amenta JS, Baccino FM. Intracellular ionic variations in the apoptotic death of L cells by inhibitors of cell cycle progression. Exp Cell Res. 1995;217(2):410–8.

    CAS  PubMed  Google Scholar 

  39. Ojcius DM, Zychlinsky A, Zheng LM, Young JD-E. Ionophore-induced apoptosis: role of DNA fragmentation and calcium fluxes. Exp Cell Res. 1991;197(1):43–9.

    CAS  PubMed  Google Scholar 

  40. Deckers C, Lyons A, Samuel K, Sanderson A, Maddy A. Alternative pathways of apoptosis induced by methylprednisolone and valinomycin analyzed by flow cytometry. Exp Cell Res. 1993;208(2):362–70.

    CAS  PubMed  Google Scholar 

  41. Perregaux D, Gabel CA. Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem. 1994;269(21):15195–203.

    CAS  PubMed  Google Scholar 

  42. Walev I, Reske K, Palmer M, Valeva A, Bhakdi S. Potassium-inhibited processing of IL-1 beta in human monocytes. EMBO J. 1995;14(8):1607.

    CAS  PubMed  Google Scholar 

  43. Abdalah R, Wei L, Francis K, Yu SP. Valinomycin-induced apoptosis in Chinese hamster ovary cells. Neurosci Lett. 2006;405(1):68–73.

    CAS  PubMed  Google Scholar 

  44. Nadeau H, McKinney S, Anderson D, Lester H. ROMK1 (Kir1.1) causes apoptosis and chronic silencing of hippocampal neurons. J Neurophys. 2000;84(2):1062–75.

    CAS  Google Scholar 

  45. Gallo V, Kingsbury A, Balazs R, Jorgensen O. The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J Neurosci. 1987;7(7):2203–13.

    CAS  PubMed  Google Scholar 

  46. D'Mello SR, Galli C, Ciotti T, Calissano P. Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci. 1993;90(23):10989–93.

    PubMed  Google Scholar 

  47. Yan G-M, Ni B, Weller M, Wood KA, Paul SM. Depolarization or glutamate receptor activation blocks apoptotic cell death of cultured cerebellar granule neurons. Brain Res. 1994;656(1):43–51.

    CAS  PubMed  Google Scholar 

  48. Galli C, Meucci O, Scorziello A, Werge TM, Calissano P, Schettini G. Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis. J Neurosci. 1995;15(2):1172–9.

    CAS  PubMed  Google Scholar 

  49. Schulz JB, Weller M, Klockgether T. Potassium deprivation-induced apoptosis of cerebellar granule neurons: a sequential requirement for new mRNA and protein synthesis, ICE-like protease activity, and reactive oxygen species. J Neurosci. 1996;16(15):4696–706.

    CAS  PubMed  Google Scholar 

  50. de Luca A, Weller M, Fontana A. TGF-β-induced apoptosis of cerebellar granule neurons is prevented by depolarization. J Neurosci. 1996;16(13):4174–85.

    PubMed  Google Scholar 

  51. Jiao S, Liu Z, Ren WH, Ding Y, Zhang YQ, Zhang ZH, et al. cAMP/protein kinase A signalling pathway protects against neuronal apoptosis and is associated with modulation of Kv2.1 in cerebellar granule cells. J Neurochem. 2007;100(4):979–91.

    CAS  PubMed  Google Scholar 

  52. Zhou MH, Yang G, Jiao S, Hu CL, Mei YA. Cholesterol enhances neuron susceptibility to apoptotic stimuli via cAMP/PKA/CREB–dependent up–regulation of Kv2.1. J Neurochem. 2012;120(4):502–14.

    CAS  PubMed  Google Scholar 

  53. Collins F, Schmidt MF, Guthrie PB, Kater S. Sustained increase in intracellular calcium promotes neuronal survival. J Neurosci. 1991;11(8):2582–7.

    CAS  PubMed  Google Scholar 

  54. Chalazonitis A, Fischbach GD. Elevated potassium induces morphological differentiation of dorsal root ganglionic neurons in dissociated cell culture. Dev Biol. 1980;78(1):173–83.

    CAS  PubMed  Google Scholar 

  55. Koh J-Y, Wie MB, Gwag BJ, Sensi SL, Canzoniero LM, Demaro J, et al. Staurosporine-induced neuronal apoptosis. Exp Neurol. 1995;135(2):153–9.

    CAS  PubMed  Google Scholar 

  56. Yu SP, Farhangrazi ZS, Ying HS, Yeh C-H, Choi DW. Enhancement of outward potassium current may participate in β-amyloid peptide-induced cortical neuronal death. Neurobiol Dis. 1998;5(2):81–8.

    CAS  PubMed  Google Scholar 

  57. Yu S, Yeh C-H, Strasser U, Tian M, Choi D. NMDA receptor-mediated K+ efflux and neuronal apoptosis. Science. 1999;284(5412):336–9.

    CAS  PubMed  Google Scholar 

  58. Aizenman E, Stout AK, Hartnett KA, Dineley KE, McLaughlin B, Reynolds IJ. Induction of neuronal apoptosis by thiol oxidation. J Neurochem. 2000;75(5):1878–88.

    CAS  PubMed  Google Scholar 

  59. Colom LV, Diaz ME, Beers DR, Neely A. Xie Wj, Appel SH. Role of potassium channels in amyloid–induced cell death. J Neurochem. 1998;70(5):1925–34.

    CAS  PubMed  Google Scholar 

  60. Yu SP, Yeh CH, Gottron F, Wang X, Grabb MC, Choi DW. Role of the outward delayed rectifier K+ current in ceramide–induced caspase activation and apoptosis in cultured cortical neurons. J Neurochem. 1999;73(3):933–41.

    CAS  PubMed  Google Scholar 

  61. Wang X, Xiao AY, Ichinose T, Yu SP. Effects of tetraethylammonium analogs on apoptosis and membrane currents in cultured cortical neurons. J Pharmacol Exp Ther. 2000;295(2):524–30.

    CAS  PubMed  Google Scholar 

  62. Furukawa K, Barger SW, Blalock EM, Mattson MP. Activation of K+ channels and suppression of neuronal activity by secreted β-amyloid-precursor protein. 1996;379(6560):74–8.

    CAS  Google Scholar 

  63. Liu D, Slevin JR, Lu C, Chan SL, Hansson M, Elmér E, et al. Involvement of mitochondrial K+ release and cellular efflux in ischemic and apoptotic neuronal death. J Neurochem. 2003;86(4):966–79.

    CAS  PubMed  Google Scholar 

  64. Hu C-L, Liu Z, Zeng X-M, Liu Z-Q, Chen X-H, Zhang Z-H, et al. 4-Aminopyridine, a Kv channel antagonist, prevents apoptosis of rat cerebellar granule neurons. Neuropharmacology. 2006;51(4):737–46.

    CAS  PubMed  Google Scholar 

  65. Hb Y, Zb L, Hx Z, Xl W. Role of potassium channels in Aβ1–40-activated apoptotic pathway in cultured cortical neurons. J Neurosci Res. 2006;84(7):1475–84.

    Google Scholar 

  66. Mei Y, Vaudry D, Basille M, Castel H, Fournier A, Vaudry H, et al. PACAP inhibits delayed rectifier potassium current via a cAMP/PKA transduction pathway: evidence for the involvement of IK in the anti–apoptotic action of PACAP. Eur J Neurosci. 2004;19(6):1446–58.

    CAS  PubMed  Google Scholar 

  67. Shen QJ, Zhao YM, Cao DX, Wang XL. Contribution of Kv channel subunits to glutamate–induced apoptosis in cultured rat hippocampal neurons. J Neurosci Res. 2009;87(14):3153–60.

    CAS  PubMed  Google Scholar 

  68. Chen X, Chi S, Liu M, Yang W, Wei T, Qi Z, et al. Inhibitory effect of ganglioside GD1b on K+ current in hippocampal neurons and its involvement in apoptosis suppression. J Lipid Res. 2005;46(12):2580–5.

    CAS  PubMed  Google Scholar 

  69. Chen L, Liu J, Xu C, Keblesh J, Zang W, Xiong H. HIV-1gp120 induces neuronal apoptosis through enhancement of 4-aminopyridine-senstive outward K+ currents. PLoS One. 2011;6(10):e25994.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Wang L, Xu D, Dai W, Lu L. An ultraviolet-activated K+ channel mediates apoptosis of myeloblastic leukemia cells. J Biol Chem. 1999;274(6):3678–85.

    CAS  PubMed  Google Scholar 

  71. Singleton KR, Will DS, Schotanus MP, Haarsma LD, Koetje LR, Bardolph SL, et al. Elevated extracellular K+ inhibits apoptosis of corneal epithelial cells exposed to UV-B radiation. Exp Eye Res. 2009;89(2):140–51.

    CAS  PubMed  Google Scholar 

  72. Lu L, Wang L, Shell B. UV-induced signaling pathways associated with corneal epithelial cell apoptosis. Invest Ophthalmol Vis Sci. 2003;44(12):5102–9.

    PubMed  Google Scholar 

  73. Lampe PA, Cornbrooks EB, Juhasz A, Johnson EM, Franklin JL. Suppression of programmed neuronal death by a thapsigargin–induced Ca2+ influx. J Neurobiol. 1995;26(2):205–12.

    CAS  PubMed  Google Scholar 

  74. Franklin J, Sanz-Rodriguez C, Juhasz A, Deckwerth T, Johnson E. Chronic depolarization prevents programmed death of sympathetic neurons in vitro but does not support growth: requirement for Ca2+ influx but not Trk activation. J Neurosci. 1995;15(1):643–64.

    CAS  PubMed  Google Scholar 

  75. Franklin JL, Johnson Jr EM. Suppression of programmed neuronal death by sustained elevation of cytoplasmic calcium. Trends Neurosci. 1992;15(12):501–8.

    CAS  PubMed  Google Scholar 

  76. Johnson Jr EM, Koike T, Franklin J. A “calcium set-point hypothesis” of neuronal dependence on neurotrophic factor. Exp Neurol. 1992;115(1):163–6.

    PubMed  Google Scholar 

  77. KoIKE T, Martin DP, Johnson EM. Role of Ca2+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: evidence that levels of internal Ca2+ determine nerve growth factor dependence of sympathetic ganglion cells. Proc Natl Acad Sci. 1989;86(16):6421–5.

    CAS  PubMed  Google Scholar 

  78. Enokido Y, Hatanaka H. Apoptotic cell death occurs in hippocampal neurons cultured in a high oxygen atmosphere. Neurosci. 1993;57(4):965–72.

    CAS  Google Scholar 

  79. Gwag B, Canzoniero L, Sensi S, Demaro J, Koh J, Goldberg M, et al. Calcium ionophores can induce either apoptosis or necrosis in cultured cortical neurons. Neurosci. 1999;90(4):1339–48.

    CAS  Google Scholar 

  80. Song J, Lee JH, Lee SH, Park KA, Lee WT, Lee JE. TRPV1 activation in primary cortical neurons induces calcium-dependent programmed cell death. Exp Neurol. 2013;22(1):51–7.

    Google Scholar 

  81. Murrell RD, Tolkovsky AM. Role of voltage–gated Ca2+ channels and intracellular Ca2+ in rat sympathetic neuron survival and function promoted by high K+ and cyclic AMP in the presence or absence of NGF. Eur J Neurosci. 1993;5(10):1261–72.

    CAS  PubMed  Google Scholar 

  82. Nilius B, Sehrer J, De Smet P, Van Driessche W, Droogmans G. Volume regulation in a toad epithelial cell line: role of coactivation of K+ and Cl– channels. J Physiol. 1995;487(Pt 2):367–78.

    CAS  PubMed  Google Scholar 

  83. Szabò I, Lepple-Wienhues A, Kaba KN, Zoratti M, Gulbins E, Lang F. Tyrosine kinase-dependent activation of a chloride channel in CD95-induced apoptosis in T lymphocytes. Proc Natl Acad Sci. 1998;95(11):6169–74.

    PubMed  Google Scholar 

  84. Shimizu T, Numata T, Okada Y. A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl– channel. Proc Natl Acad Sci U S A. 2004;101(17):6770–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Okada Y, Shimizu T, Maeno E, Tanabe S, Wang X, Takahashi N. Volume-sensitive chloride channels involved in apoptotic volume decrease and cell death. J Membr Biol. 2006;209(1):21–9.

    CAS  PubMed  Google Scholar 

  86. Dupere-Minier G, Hamelin C, Desharnais P, Bernier J. Apoptotic volume decrease, pH acidification and chloride channel activation during apoptosis requires CD45 expression in HPB-ALL T cells. Apoptosis. 2004;9(5):543–51.

    CAS  PubMed  Google Scholar 

  87. Wei L, Xiao AY, Jin C, Yang A, Lu ZY, Yu SP. Effects of chloride and potassium channel blockers on apoptotic cell shrinkage and apoptosis in cortical neurons. Pflugers Arch. 2004;448(3):325–34.

    CAS  PubMed  Google Scholar 

  88. RASOLA A, FAR DF, HOFMAN P, ROSSI B. Lack of internucleosomal DNA fragmentation is related to Cl– efflux impairment in hematopoietic cell apoptosis. FASEB J. 1999;13(13):1711–23.

    CAS  PubMed  Google Scholar 

  89. Inoue H, Ohtaki H, Nakamachi T, Shioda S, Okada Y. Anion channel blockers attenuate delayed neuronal cell death induced by transient forebrain ischemia. J Neurosci Res. 2007;85(7):1427–35.

    CAS  PubMed  Google Scholar 

  90. Gerhardt E, Kügler S, Leist M, Beier C, Berliocchi L, Volbracht C, et al. Cascade of caspase activation in potassium-deprived cerebellar granule neurons: targets for treatment with peptide and protein inhibitors of apoptosis. Mol Cell Neurosci. 2001;17(4):717–31.

    CAS  PubMed  Google Scholar 

  91. Castel H, Vaudry D, MEI YA, Lefebvre T, Basille M, Desrues L, et al. The delayed rectifier channel current IK plays a key role in the control of programmed cell death by PACAP and ethanol in cerebellar granule neurons. Ann N Y Acad Sci. 2006;1070(1):173–9.

    CAS  PubMed  Google Scholar 

  92. McLaughlin B, Pal S, Tran MP, Parsons AA, Barone FC, Erhardt JA, et al. p38 activation is required upstream of potassium current enhancement and caspase cleavage in thiol oxidant-induced neuronal apoptosis. J Neurosci. 2001;21(10):3303–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Pal S, Hartnett KA, Nerbonne JM, Levitan ES, Aizenman E. Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. The. J Neurosci. 2003;23(12):4798–802.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Redman PT, Jefferson BS, Ziegler CB, Mortensen OV, Torres GE, Levitan ES, et al. A vital role for voltage-dependent potassium channels in dopamine transporter-mediated 6-hydroxydopamine neurotoxicity. Neuroscience. 2006;143(1):1–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Redman PT, He K, Hartnett KA, Jefferson BS, Hu L, Rosenberg PA, et al. Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. Proc Natl Acad Sci. 2007;104(9):3568–73.

    CAS  PubMed  Google Scholar 

  96. Aras MA, Aizenman E. Obligatory role of ASK1 in the apoptotic surge of K+ currents. Neurosci Lett. 2005;387(3):136–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Huang H, Gao TM, Gong L-W, Zhuang Z-Y, Li X. Potassium channel blocker TEA prevents CA1 hippocampal injury following transient forebrain ischemia in adult rats. Neurosci Lett. 2001;305(2):83–6.

    CAS  PubMed  Google Scholar 

  98. Wei L, Yu SP, Gottron F, Snider BJ, Zipfel GJ, Choi DW. Potassium channel blockers attenuate hypoxia- and ischemia-induced neuronal death in vitro and in vivo. Stroke. 2003;34(5):1281–6.

    CAS  PubMed  Google Scholar 

  99. Bossy-Wetzel E, Talantova MV, Lee WD, Schölzke MN, Harrop A, Mathews E, et al. Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron. 2004;41(3):351–65.

    CAS  PubMed  Google Scholar 

  100. Knoch ME, Hartnett KA, Hara H, Kandler K, Aizenman E. Microglia induce neurotoxicity via intraneuronal Zn2+ release and a K+ current surge. Glia. 2008;56(1):89–96.

    PubMed Central  PubMed  Google Scholar 

  101. Yao H, Zhou K, Yan D, Li M, Wang Y. The Kv2.1 channels mediate neuronal apoptosis induced by excitotoxicity. J Neurochem. 2009;108(4):909–19.

    CAS  PubMed  Google Scholar 

  102. Hu CL, Liu Z, Gao ZY, Zhang ZH, Mei YA. 2-Iodomelatonin prevents apoptosis of cerebellar granule neurons via inhibition of A-type transient outward K+ currents. J Pineal Res. 2005;38(1):53–61.

    CAS  PubMed  Google Scholar 

  103. Chen M, Sun H-Y, Hu P, Wang C-F, Li B-X, Li S-J, et al. Activation of BKCa channels mediates hippocampal neuronal death after reoxygenation and reperfusion. Molecular neurobiology. 2013:1–14.

  104. Jalonen TO, Charniga CJ, Wielt DB. β-Amyloid peptide-induced morphological changes coincide with increased K+ and Cl channel activity in rat cortical astrocytes. Brain Res. 1997;746(1):85–97.

    CAS  PubMed  Google Scholar 

  105. Lauritzen I, Zanzouri M, Honoré E, Duprat F, Ehrengruber MU, Lazdunski M, et al. K+-dependent cerebellar granule neuron apoptosis role of task leak K+ channels. J Biol Chem. 2003;278(34):32068–76.

    CAS  PubMed  Google Scholar 

  106. Pal S, Takimoto K, Aizenman E, Levitan E. Apoptotic surface delivery of K+ channels. Cell Death Differ. 2005;13(4):661–7.

    Google Scholar 

  107. Redman PT, Hartnett KA, Aras MA, Levitan ES, Aizenman E. Regulation of apoptotic potassium currents by coordinated zinc–dependent signalling. J Physiol. 2009;587(18):4393–404.

    CAS  PubMed  Google Scholar 

  108. Dallas ML, Boyle JP, Milligan CJ, Sayer R, Kerrigan TL, McKinstry C, et al. Carbon monoxide protects against oxidant-induced apoptosis via inhibition of Kv2.1. The. FASEB J. 2011;25(5):1519–30.

    CAS  PubMed  Google Scholar 

  109. Zhao Y-M, Sun L-N, Zhou H-Y, Wang X-L. Voltage-dependent potassium channels are involved in glutamate-induced apoptosis of rat hippocampal neurons. Neurosci Lett. 2006;398(1):22–7.

    CAS  PubMed  Google Scholar 

  110. Jiang C, Sigworth F, Haddad G. Oxygen deprivation activates an ATP-inhibitable K+ channel in substantia nigra neurons. J Neurosci. 1994;14(9):5590–602.

    CAS  PubMed  Google Scholar 

  111. Jiang C, Haddad GG. Effect of anoxia on intracellular and extracellular potassium activity in hypoglossal neurons in vitro. J Neurophys. 1991;66(1):103–11.

    CAS  Google Scholar 

  112. Jiang C, Haddad GG. A direct mechanism for sensing low oxygen levels by central neurons. Proc Natl Acad Sci. 1994;91(15):7198–201.

    CAS  PubMed  Google Scholar 

  113. Jiang C, Haddad G. Oxygen deprivation inhibits a K+ channel independently of cytosolic factors in rat central neurons. J Physiol. 1994;481(Pt 1):15–26.

    CAS  PubMed  Google Scholar 

  114. Yushmanov VE, Kharlamov A, Yanovski B, LaVerde G, Boada FE, Jones SC. Correlated sodium and potassium imbalances within the ischemic core in experimental stroke: a 23Na MRI and histochemical imaging study. Brain research. 2013;1527:199–208.

    CAS  PubMed  Google Scholar 

  115. Leblond J, Krnjevic K. Hypoxic changes in hippocampal neurons. J Neurophys. 1989;62(1):1–14.

    CAS  Google Scholar 

  116. Jiang C, Haddad GG. Short periods of hypoxia activate a K+ current in central neurons. Brain Res. 1993;614(1):352–6.

    CAS  PubMed  Google Scholar 

  117. Chi X, Xu Z. Alterations of single potassium channel activity in CA1 pyramidal neurons after transient forebrain ischemia. Neurosci. 2001;108(4):535–40.

    CAS  Google Scholar 

  118. HANSEN AJ, ZEUTHEN T. Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta physiologica Scandinavica. 1981;113(4):437–45.

    CAS  PubMed  Google Scholar 

  119. Gido G, Kristian T, Siesjo BK. Extracellular potassium in a neocortical core area after transient focal ischemia. Stroke. 1997;28(1):206–10.

    CAS  PubMed  Google Scholar 

  120. Xuan Chi X, Xu ZC. Potassium currents in CA1 neurons of rat hippocampus increase shortly after transient cerebral ischemia. Neurosci Lett. 2000;281(1):5–8.

    CAS  PubMed  Google Scholar 

  121. Chi XX, Xu ZC. Differential changes of potassium currents in CA1 pyramidal neurons after transient forebrain ischemia. J Neurophys. 2000;84(6):2834–43.

    CAS  Google Scholar 

  122. Trimmer JS. Immunological identification and characterization of a delayed rectifier K+ channel polypeptide in rat brain. Proc Natl Acad Sci. 1991;88(23):10764–8.

    CAS  PubMed  Google Scholar 

  123. Murakoshi H, Trimmer JS. Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons. The. J Neurosci. 1999;19(5):1728–35.

    CAS  PubMed  Google Scholar 

  124. Sensi SL, Paoletti P, Koh J-Y, Aizenman E, Bush AI, Hershfinkel M. The neurophysiology and pathology of brain zinc. J Neurosci. 2011;31(45):16076–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Amako Y, Igloi Z, Mankouri J, Kazlauskas A, Saksela K, Dallas M, et al. Hepatitis C virus NS5A inhibits mixed lineage kinase 3 to block apoptosis. J Biol Chem. 2013;288(34):24753–63.

    CAS  PubMed  Google Scholar 

  126. Tiran Z, Peretz A, Attali B, Elson A. Phosphorylation-dependent regulation of Kv2.1 channel activity at tyrosine 124 by Src and by protein-tyrosine phosphatase ε. J Biol Chem. 2003;278(19):17509–14.

    CAS  PubMed  Google Scholar 

  127. Sobko A, Peretz A, Attali B. Constitutive activation of delayed-rectifier potassium channels by a src family tyrosine kinase in Schwann cells. EMBO J. 1998;17(16):4723–34.

    CAS  PubMed  Google Scholar 

  128. Leung YM, Kang Y, Gao X, Xia F, Xie H, Sheu L, et al. Syntaxin 1A binds to the cytoplasmic C terminus of Kv2.1 to regulate channel gating and trafficking. J Biol Chem. 2003;278(19):17532–8.

    CAS  PubMed  Google Scholar 

  129. McCord MC, Aizenman E. Convergent Ca2+ and Zn2+ signaling regulates apoptotic Kv2.1 K+ currents. Proc Natl Acad Sci. 2013;110(34):13988–93.

    Google Scholar 

  130. Zhang Y, Wang H, Li J, Jimenez DA, Levitan ES, Aizenman E, et al. Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J Neurosci. 2004;24(47):10616–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Shepherd AJ, Loo L, Gupte RP, Mickle AD, Mohapatra DP. Distinct modifications in Kv2.1 channel via chemokine receptor CXCR4 regulate neuronal survival–death dynamics. The. J Neurosci. 2012;32(49):17725–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Yuan H, Wang W-P, Feng N, Wang L, Wang X-L. Donepezil attenuated oxygen–glucose deprivation insult by blocking Kv2.1 potassium channels. Eur J Pharmacol. 2011;657(1):76–83.

    CAS  PubMed  Google Scholar 

  133. Al-Owais MM, Scragg JL, Dallas ML, Boycott HE, Warburton P, Chakrabarty A, et al. Carbon monoxide mediates the anti-apoptotic effects of heme oxygenase-1 in medulloblastoma DAOY cells via K+ channel inhibition. J Biol Chem. 2012;287(29):24754–64.

    CAS  PubMed  Google Scholar 

  134. Cotella D, Hernandez-Enriquez B, Wu X, Li R, Pan Z, Leveille J, et al. Toxic role of K+ channel oxidation in mammalian brain. J Neurosci. 2012;32(12):4133–44.

    CAS  PubMed  Google Scholar 

  135. Wu X, Hernandez-Enriquez B, Banas M, Xu R, Sesti F. Molecular mechanisms underlying the apoptotic effect of KCNB1 K+ channel oxidation. J Biol Chem. 2013;288(6):4128–34.

    CAS  PubMed  Google Scholar 

  136. Mankouri J, Dallas ML, Hughes ME, Griffin SD, Macdonald A, Peers C, et al. Suppression of a pro-apoptotic K+ channel as a mechanism for hepatitis C virus persistence. Sci Signal. 2009;106(37):15903.

    CAS  Google Scholar 

  137. Norris CA, He K, Springer MG, Hartnett KA, Horn JP, Aizenman E. Regulation of neuronal proapoptotic potassium currents by the hepatitis C virus nonstructural protein 5A. J Neurosci. 2012;32(26):8865–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Stapels M, Piper C, Yang T, Li M, Stowell C. Xiong Z-g, et al. Polycomb group proteins as epigenetic mediators of neuroprotection in ischemic tolerance. Sci Signal. 2010;3(111):ra15.

    PubMed  Google Scholar 

  139. Stenzel-Poore MP, Stevens SL, Xiong Z, Lessov NS, Harrington CA, Mori M, et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet. 2003;362(9389):1028–37.

    CAS  PubMed  Google Scholar 

  140. Pannaccione A, Boscia F, Scorziello A, Adornetto A, Castaldo P, Sirabella R, et al. Up-regulation and increased activity of Kv3.4 channels and their accessory subunit MinK-related peptide 2 induced by amyloid peptide are involved in apoptotic neuronal death. Mol Pharmacol. 2007;72(3):665–73.

    CAS  PubMed  Google Scholar 

  141. Pannaccione A, Secondo A, Scorziello A, Calì G, Taglialatela M, Annunziato L. Nuclear factor-κB activation by reactive oxygen species mediates voltage-gated K+ current enhancement by neurotoxic β-amyloid peptides in nerve growth factor-differentiated PC-12 cells and hippocampal neurones. J Neurochem. 2005;94(3):572–86.

    CAS  PubMed  Google Scholar 

  142. Pieri M, Amadoro G, Carunchio I, Ciotti M, Quaresima S, Florenzano F, et al. SP protects cerebellar granule cells against β-amyloid-induced apoptosis by down-regulation and reduced activity of Kv4 potassium channels. Neuropharmacology. 2010;58(1):268–76.

    CAS  PubMed  Google Scholar 

  143. Hu D, Liu J, Keblesh J, Xiong H. Involvement of the 4-aminopyridine-sensitive transient A-type K+ current in macrophage-induced neuronal injury. Eur J Neurosci. 2010;31(2):214–22.

    PubMed Central  PubMed  Google Scholar 

  144. Ogita K, Okuda H, Watanabe M, Nagashima R, Sugiyama C, Yoneda Y. In vivo treatment with the K+ channel blocker 4-aminopyridine protects against kainate-induced neuronal cell death through activation of NMDA receptors in murine hippocampus. Neuropharmacology. 2005;48(6):810–21.

    CAS  PubMed  Google Scholar 

  145. Jiao S, Wu MM, Hu CL, Zhang ZH, Mei YA. Melatonin receptor agonist 2–iodomelatonin prevents apoptosis of cerebellar granule neurons via K+ current inhibition. J Pineal Res. 2004;36(2):109–16.

    CAS  PubMed  Google Scholar 

  146. Angulo E, Noé V, Casadó V, Mallol J. Gomez–Isla T, Lluis C, et al. Up–regulation of the Kv3.4 potassium channel subunit in early stages of Alzheimer's disease. J Neurochem. 2004;91(3):547–57.

    CAS  PubMed  Google Scholar 

  147. Pan Y, Xu X, Tong X, Wang X. Messenger RNA and protein expression analysis of voltage-gated potassium channels in the brain of Aβ25–35-treated rats. J Neurosci Res. 2004;77(1):94–9.

    CAS  PubMed  Google Scholar 

  148. Plant LD, Webster NJ, Boyle JP, Ramsden M, Freir DB, Peers C, et al. Amyloid β peptide as a physiological modulator of neuronal ‘A’-type K+ current. Neurobiol Aging. 2006;27(11):1673–83.

    CAS  PubMed  Google Scholar 

  149. Ramsden M, Plant LD, Webster NJ, Vaughan PF, Henderson Z, Pearson HA. Differential effects of unaggregated and aggregated amyloid β protein (1–40) on K+ channel currents in primary cultures of rat cerebellar granule and cortical neurones. J Neurochem. 2001;79(3):699–712.

    CAS  PubMed  Google Scholar 

  150. Hu CL, Zeng XM, Zhou MH, Shi YT, Cao H, Mei YA. Kv 1.1 is associated with neuronal apoptosis and modulated by protein kinase C in the rat cerebellar granule cell. J Neurochem. 2008;106(3):1125–37.

    CAS  PubMed  Google Scholar 

  151. Koeberle P, Wang Y, Schlichter L. Kv1.1 and Kv1.3 channels contribute to the degeneration of retinal ganglion cells after optic nerve transection in vivo. Cell Death Differ. 2009;17(1):134–44.

    Google Scholar 

  152. Koeberle P, Schlichter LC. Targeting KV channels rescues retinal ganglion cells in vivo directly and by reducing inflammation. Channels. 2010;4(5):337–46.

    CAS  PubMed  Google Scholar 

  153. Guan D, Tkatch T, Surmeier D, Armstrong W, Foehring R. Kv2 subunits underlie slowly inactivating potassium current in rat neocortical pyramidal neurons. J Physiol. 2007;581(3):941–60.

    CAS  PubMed  Google Scholar 

  154. Baranauskas G, Tkatch T, Surmeier DJ. Delayed rectifier currents in rat globus pallidus neurons are attributable to Kv2.1 and Kv3.1/3.2 K+ channels. The. J Neurosci. 1999;19(15):6394–404.

    CAS  PubMed  Google Scholar 

  155. Baranauskas G. Ionic channel function in action potential generation: current perspective. Mol Neurobiol. 2007;35(2):129–50.

    CAS  PubMed  Google Scholar 

  156. Kang J, Huguenard JR, Prince DA. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons. J Neurophys. 2000;83(1):70–80.

    CAS  Google Scholar 

  157. Bekkers JM. Distribution and activation of voltage-gated potassium channels in cell-attached and outside-out patches from large layer 5 cortical pyramidal neurons of the rat. J Physiol. 2000;525(3):611–20.

    CAS  PubMed  Google Scholar 

  158. Korngreen A, Sakmann B. Voltage–gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. J Physiol. 2000;525(3):621–39.

    CAS  PubMed  Google Scholar 

  159. Trimmer JS. Expression of Kv2.1 delayed rectifier K+ channel isoforms in the developing rat brain. FEBS letters. 1993;324(2):205–10.

    CAS  PubMed  Google Scholar 

  160. Shi G, Kleinklaus AK, Marrion NV, Trimmer JS. Properties of Kv2.1 K+ channels expressed in transfected mammalian cells. J Biol Chem. 1994;269(37):23204–11.

    CAS  PubMed  Google Scholar 

  161. Misonou H, Mohapatra DP, Park EW, Leung V, Zhen D, Misonou K, et al. Regulation of ion channel localization and phosphorylation by neuronal activity. Nat Neurosci. 2004;7(7):711–8.

    CAS  PubMed  Google Scholar 

  162. Misonou H, Thompson SM, Cai X. Dynamic regulation of the Kv2.1 voltage-gated potassium channel during brain ischemia through neuroglial interaction. The. J Neurosci. 2008;28(34):8529–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Aras MA, Saadi RA, Aizenman E. Zn2+ regulates Kv2.1 voltage-dependent gating and localization following ischemia. Eur J Neurosci. 2009;30(12):2250–7.

    PubMed Central  PubMed  Google Scholar 

  164. Mohapatra DP, Trimmer JS. The Kv2.1 C terminus can autonomously transfer Kv2.1-like phosphorylation-dependent localization, voltage-dependent gating, and muscarinic modulation to diverse Kv channels. The. J Neurosci. 2006;26(2):685–95.

    CAS  PubMed  Google Scholar 

  165. Misonou H, Menegola M, Mohapatra DP, Guy LK, Park K-S, Trimmer JS. Bidirectional activity-dependent regulation of neuronal ion channel phosphorylation. J Neurosci. 2006;26(52):13505–14.

    CAS  PubMed  Google Scholar 

  166. Perozo E, Bezanilla F. Phosphorylation affects voltage gating of the delayed rectifier K+ channel by electrostatic interactions. Neuron. 1990;5(5):685–90.

    CAS  PubMed  Google Scholar 

  167. Cerda O, Trimmer JS. Activity-dependent phosphorylation of neuronal Kv2.1 potassium channels by CDK5. J Biol Chem. 2011;286(33):28738–48.

    CAS  PubMed  Google Scholar 

  168. Du J, Tao-Cheng J-H, Zerfas P, McBain C. The K+ channel, Kv2.1, is apposed to astrocytic processes and is associated with inhibitory postsynaptic membranes in hippocampal and cortical principal neurons and inhibitory interneurons. Neurosci. 1998;84(1):37–48.

    CAS  Google Scholar 

  169. Mulholland PJ, Carpenter-Hyland EP, Hearing MC, Becker HC, Woodward JJ, Chandler LJ. Glutamate transporters regulate extrasynaptic NMDA receptor modulation of Kv2.1 potassium channels. The. J Neurosci. 2008;28(35):8801–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Mulholland PJ, Carpenter-Hyland EP, Woodward JJ, Chandler LJ. Ethanol disrupts NMDA receptor and astroglial EAAT2 modulation of Kv2.1 potassium channels in hippocampus. Alcohol. 2009;43(1):45–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  171. McLaughlin B, Hartnett KA, Erhardt JA, Legos JJ, White RF, Barone FC, et al. Caspase 3 activation is essential for neuroprotection in preconditioning. Proc Natl Acad Sci. 2003;100(2):715–20.

    CAS  PubMed  Google Scholar 

  172. Aras MA, Hara H, Hartnett KA, Kandler K, Aizenman E. Protein kinase C regulation of neuronal zinc signaling mediates survival during preconditioning. J Neurochem. 2009;110(1):106–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Lim ST, Antonucci DE, Scannevin RH, Trimmer JS. A novel targeting signal for proximal clustering of the Kv2.1 K+ channel in hippocampal neurons. Neuron. 2000;25(2):385–97.

    CAS  PubMed  Google Scholar 

  174. Scannevin RH, Murakoshi H, Rhodes KJ, Trimmer JS. Identification of a cytoplasmic domain important in the polarized expression and clustering of the Kv2.1 K+ channel. J Cell Biol. 1996;135(6):1619–32.

    CAS  PubMed  Google Scholar 

  175. Mohapatra DP, Siino DF, Trimmer JS. Interdomain cytoplasmic interactions govern the intracellular trafficking, gating, and modulation of the Kv2.1 channel. The. J Neurosci. 2008;28(19):4982–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. O'Connell KM, Loftus R, Tamkun MM. Localization-dependent activity of the Kv2.1 delayed-rectifier K+ channel. Proc Natl Acad Sci. 2010;107(27):12351–6.

    PubMed  Google Scholar 

  177. O'Connell KM, Tamkun MM. Targeting of voltage-gated potassium channel isoforms to distinct cell surface microdomains. J Cell Sci. 2005;118(10):2155–66.

    PubMed  Google Scholar 

  178. O'Connell KM, Rolig AS, Whitesell JD, Tamkun MM. Kv2.1 potassium channels are retained within dynamic cell surface microdomains that are defined by a perimeter fence. The. J Neurosci. 2006;26(38):9609–18.

    PubMed  Google Scholar 

  179. Deutsch E, Weigel AV, Akin EJ, Fox P, Hansen G, Haberkorn CJ, et al. Kv2.1 cell surface clusters are insertion platforms for ion channel delivery to the plasma membrane. Mol Biol Cell. 2012;23(15):2917–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Singer-Lahat D, Chikvashvili D, Lotan I. Direct interaction of endogenous Kv channels with syntaxin enhances exocytosis by neuroendocrine cells. PLoS One. 2008;3(1):e1381.

    PubMed Central  PubMed  Google Scholar 

  181. Feinshreiber L, Singer–Lahat D, Ashery U, Lotan I. Voltage-gated potassium channel as a facilitator of exocytosis. Ann N Y Acad Sci. 2009;1152(1):87–92.

    CAS  PubMed  Google Scholar 

  182. Fox PD, Loftus RJ, Tamkun MM. Regulation of Kv2.1 K(+) conductance by cell surface channel density. The. J Neurosci. 2013;33(3):1259–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Deng P, Pang Z-P, Zhang Y, Xu Z. Increase of delayed rectifier potassium currents in large aspiny neurons in the neostriatum following transient forebrain ischemia. Neuroscience. 2005;131(1):135–46.

    CAS  PubMed  Google Scholar 

  184. Chung YH, Kim HS, Shin CM, Kim MJ, Cha CI. Immunohistochemical study on the distribution of voltage-gated K+ channels in rat brain following transient focal ischemia. Neurosci Lett. 2001;308(3):157–60.

    CAS  PubMed  Google Scholar 

  185. Deng P, Pang Z-P, Lei Z, Shikano S, Xiong Q, Harvey BK, et al. Up-regulation of A-type potassium currents protects neurons against cerebral ischemia. J Cereb Blood Flow Metab. 2011;31(9):1823–35.

    CAS  PubMed  Google Scholar 

  186. Southan AP, Robertson B. Patch-clamp recordings from cerebellar basket cell bodies and their presynaptic terminals reveal an asymmetric distribution of voltage-gated potassium channels. J Neurosci. 1998;18(3):948–55.

    CAS  PubMed  Google Scholar 

  187. Goldberg EM, Clark BD, Zagha E, Nahmani M, Erisir A, Rudy B. K+ Channels at the axon initial segment dampen near-threshold excitability of neocortical fast-spiking GABAergic interneurons. Neuron. 2008;58(3):387–400.

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Geiger JR, Jonas P. Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron. 2000;28(3):927–39.

    CAS  PubMed  Google Scholar 

  189. Shu Y, Yu Y, Yang J, McCormick DA. Selective control of cortical axonal spikes by a slowly inactivating K+ current. Proc Natl Acad Sci. 2007;104(27):11453–8.

    CAS  PubMed  Google Scholar 

  190. Kole MH, Letzkus JJ, Stuart GJ. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron. 2007;55(4):633–47.

    CAS  PubMed  Google Scholar 

  191. Hsiao C-F, Kaur G, Vong A, Bawa H, Chandler SH. Participation of Kv1 channels in control of membrane excitability and burst generation in mesencephalic V neurons. J Neurophys. 2009;101(3):1407–18.

    CAS  Google Scholar 

  192. Dodson PD, Billups B, Rusznák Z, Szûcs G, Barker MC, Forsythe ID. Presynaptic rat Kv1.2 channels suppress synaptic terminal hyperexcitability following action potential invasion. J Physiol. 2003;550(1):27–33.

    CAS  PubMed  Google Scholar 

  193. Dodson PD, Forsythe ID. Presynaptic K+ channels: electrifying regulators of synaptic terminal excitability. Trends Neurosci. 2004;27(4):210–7.

    CAS  PubMed  Google Scholar 

  194. Lambe EK, Aghajanian GK. The role of Kv1.2-containing potassium channels in serotonin-induced glutamate release from thalamocortical terminals in rat frontal cortex. The. J Neurosci. 2001;21(24):9955–63.

    CAS  PubMed  Google Scholar 

  195. Higgs MH, Spain WJ. Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurones. J Physiol. 2011;589(21):5125–42.

    CAS  PubMed  Google Scholar 

  196. Heeroma JH, Henneberger C, Rajakulendran S, Hanna MG, Schorge S, Kullmann DM. Episodic ataxia type 1 mutations differentially affect neuronal excitability and transmitter release. Disease models & mechanisms. 2009;2(11–12):612–9.

    CAS  Google Scholar 

  197. Bekkers JM, Delaney AJ. Modulation of excitability by α-dendrotoxin-sensitive potassium channels in neocortical pyramidal neurons. J Neurosci. 2001;21(17):6553–60.

    CAS  PubMed  Google Scholar 

  198. Gu N, Vervaeke K, Hu H, Storm JF. Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J Physiol. 2005;566(3):689–715.

    CAS  PubMed  Google Scholar 

  199. Vervaeke K, Gu N, Agdestein C, Hu H, Storm J. Kv7/KCNQ/M-channels in rat glutamatergic hippocampal axons and their role in regulation of excitability and transmitter release. J Physiol. 2006;576(1):235–56.

    CAS  PubMed  Google Scholar 

  200. Tzingounis AV, Nicoll RA. Contribution of KCNQ2 and KCNQ3 to the medium and slow afterhyperpolarization currents. Proc Natl Acad Sci. 2008;105(50):19974–9.

    CAS  PubMed  Google Scholar 

  201. Tzingounis AV, Heidenreich M, Kharkovets T, Spitzmaul G, Jensen HS, Nicoll RA, et al. The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus. Proc Natl Acad Sci. 2010;107(22):10232–7.

    CAS  PubMed  Google Scholar 

  202. Peters HC, Hu H, Pongs O, Storm JF, Isbrandt D. Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat Neurosci. 2004;8(1):51–60.

    PubMed  Google Scholar 

  203. Jentsch TJ. Neuronal KCNQ potassium channels: physiology and role in disease. Nat Rev Neurosci. 2000;1(1):21–30.

    Google Scholar 

  204. Foust AJ, Yu Y, Popovic M, Zecevic D, McCormick DA. Somatic membrane potential and Kv1 channels control spike repolarization in cortical axon collaterals and presynaptic boutons. J Neurosci. 2011;31(43):15490–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Gancher ST, Nutt JG. Autosomal dominant episodic ataxia: a heterogeneous syndrome. Mov Disord. 1986;1(4):239–53.

    CAS  PubMed  Google Scholar 

  206. Browne DL, Gancher ST, Nutt JG, Brunt ER, Smith EA, Kramer P, et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet. 1994;8(2):136–40.

    Google Scholar 

  207. Scheffer H, Brunt E, Mol G, Van der Vlies P, Verlind E, Mantel G, et al. Three novel KCNA1 mutations in episodic ataxia type I families. Hum Genet. 1998;102(4):464–6.

    CAS  PubMed  Google Scholar 

  208. Zerr P, Adelman JP, Maylie J. Episodic ataxia mutations in Kv1.1 alter potassium channel function by dominant negative effects or haploinsufficiency. The. J Neurosci. 1998;18(8):2842–8.

    CAS  PubMed  Google Scholar 

  209. D'Adamo MC, Liu Z, Adelman JP, Maylie J, Pessia M. Episodic ataxia type-1 mutations in the hKv1.1 cytoplasmic pore region alter the gating properties of the channel. The EMBO journal. 1998;17(5):1200–7.

    PubMed  Google Scholar 

  210. Spauschus A, Eunson L, Hanna MG, Kullmann DM. Functional characterization of a novel mutation in KCNA1 in episodic ataxia type 1 associated with epilepsy. Ann N Y Acad Sci. 1999;868(1):442–6.

    CAS  PubMed  Google Scholar 

  211. Zuberi S, Eunson L, Spauschus A, De Silva R, Tolmie J, Wood N, et al. A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy. Brain. 1999;122(5):817–25.

    PubMed  Google Scholar 

  212. Herson PS, Virk M, Rustay NR, Bond CT, Crabbe JC, Adelman JP, et al. A mouse model of episodic ataxia type-1. Nat Neurosci. 2003;6(4):378–83.

    CAS  PubMed  Google Scholar 

  213. Rajakulendran S, Schorge S, Kullmann DM, Hanna MG. Episodic ataxia type 1: a neuronal potassium channelopathy. Neurotherapeutics. 2007;4(2):258–66.

    CAS  PubMed  Google Scholar 

  214. Zerr P, Adelman JP, Maylie J. Characterization of three episodic ataxia mutations in the human Kv1.1 potassium channel. FEBS letters. 1998;431(3):461–4.

    CAS  PubMed  Google Scholar 

  215. Browne D, Brunt E, Griggs R, Nutt J, Gancher S, Smith E, et al. Identification of two new KCNA1 mutations in episodic ataxia/myokymia families. Hum Mol Genet. 1995;4(9):1671–2.

    CAS  PubMed  Google Scholar 

  216. Poujois A, Antoine J-C, Combes A, Touraine RL. Chronic neuromyotonia as a phenotypic variation associated with a new mutation in the KCNA1 gene. J Neurol. 2006;253(7):957–9.

    CAS  PubMed  Google Scholar 

  217. Zhu J, Alsaber R, Zhao J, Ribeiro-Hurley E, Thornhill WB. Characterization of the Kv1.1 I262T and S342I mutations associated with episodic ataxia 1 with distinct phenotypes. Archives of Biochemistry and. Biophysics. 2012;524(2):99–105.

    CAS  Google Scholar 

  218. Klein A, Boltshauser E, Jen J, Baloh R. Episodic ataxia type 1 with distal weakness: a novel manifestation of a potassium channelopathy. Neuropediatrics. 2004;35(02):147–9.

    CAS  PubMed  Google Scholar 

  219. Tomlinson SE, Tan SV, Kullmann DM, Griggs RC, Burke D, Hanna MG, et al. Nerve excitability studies characterize Kv1.1 fast potassium channel dysfunction in patients with episodic ataxia type 1. Brain. 2010;133(12):3530–40.

    PubMed  Google Scholar 

  220. Çomu S, Narayanan V, Giuliani M. Episodic ataxia and myokymia syndrome: a new mutation of potassium channel gene Kv1.1. Annals of neurology. 1996;40(4):684–7.

    PubMed  Google Scholar 

  221. Shook SJ, Mamsa H, Jen JC, Baloh RW, Zhou L. Novel mutation in KCNA1 causes episodic ataxia with paroxysmal dyspnea. Muscle Nerve. 2008;37(3):399–402.

    CAS  PubMed  Google Scholar 

  222. Lee H, Wang H, Jen JC, Sabatti C, Baloh RW, Nelson SF. A novel mutation in KCNA1 causes episodic ataxia without myokymia. Hum Mutat. 2004;24(6):536.

    PubMed  Google Scholar 

  223. Rea R, Spauschus A, Eunson LH, Hanna MG, Kullmann DM. Variable K+ channel subunit dysfunction in inherited mutations of KCNA1. J Physiol. 2002;538(1):5–23.

    CAS  PubMed  Google Scholar 

  224. Eunson L, Rea R, Zuberi S, Youroukos S, Panayiotopoulos C, Liguori R, et al. Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA 1 reveal new phenotypic variability. Annals of neurology. 2000;48(4):647–56.

    CAS  PubMed  Google Scholar 

  225. Manganas LN, Akhtar S, Antonucci DE, Campomanes CR, Dolly JO, Trimmer JS. Episodic ataxia type-1 mutations in the Kv1.1 potassium channel display distinct folding and intracellular trafficking properties. J Biol Chem. 2001;276(52):49427–34.

    CAS  PubMed  Google Scholar 

  226. Maslarova A, Salar S, Lapilover E, Friedman A, Veh RW, Heinemann U. Increased susceptibility to acetylcholine in the entorhinal cortex of pilocarpine-treated rats involves alterations in KCNQ channels. Neurobiol Dis. 2013;56:14–24.

    Google Scholar 

  227. Adelman JP, Bond CT, Pessia M, Mayliet J. Episodic ataxia results from voltage-dependent potassium channels with altered functions. Neuron. 1995;15(6):1449–54.

    CAS  PubMed  Google Scholar 

  228. Imbrici P, Cusimano A, D'Adamo M, De Curtis A, Pessia M. Functional characterization of an episodic ataxia type-1 mutation occurring in the S1 segment of hKv1.1 channels. Pflugers Arch. 2003;446(3):373–9.

    CAS  PubMed  Google Scholar 

  229. Maylie B, Bissonnette E, Virk M, Adelman JP, Maylie JG. Episodic ataxia type 1 mutations in the human Kv1.1 potassium channel alter hKvβ1-induced N-type inactivation. The. J Neurosci. 2002;22(12):4786–93.

    CAS  PubMed  Google Scholar 

  230. Peters CJ, Werry D, Gill HS, Accili EA, Fedida D. Mechanism of accelerated current decay caused by an episodic ataxia type-1-associated mutant in a potassium channel pore. J Neurosci. 2011;31(48):17449–59.

    CAS  PubMed  Google Scholar 

  231. Brunetti O, Imbrici P, Botti FM, Pettorossi VE, D'Adamo MC, Valentino M, et al. Kv1.1 knock-in ataxic mice exhibit spontaneous myokymic activity exacerbated by fatigue, ischemia and low temperature. Neurobiol Dis. 2012;47(3):310–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  232. Petersson S, Persson AS, Johansen JE, Ingvar M, Nilsson J, Klement G, et al. Truncation of the Shaker-like voltage-gated potassium channel, Kv1.1, causes megencephaly. Eur J Neurosci. 2003;18(12):3231–40.

    PubMed  Google Scholar 

  233. Ishida S, Sakamoto Y, Nishio T, Baulac S, Kuwamura M, Ohno Y, et al. Kcna1-mutant rats dominantly display myokymia, neuromyotonia and spontaneous epileptic seizures. Brain Res. 2012;1435:154–66.

    CAS  PubMed  Google Scholar 

  234. Liguori R, Avoni P, Baruzzi A, Di Stasi V, Montagna P. Familial continuous motor unit activity and epilepsy. Muscle Nerve. 2001;24(5):630–3.

    CAS  PubMed  Google Scholar 

  235. Demos MK, Macri V, Farrell K, Nelson TN, Chapman K, Accili E, et al. A novel KCNA1 mutation associated with global delay and persistent cerebellar dysfunction. Mov Disord. 2009;24(5):778–82.

    PubMed  Google Scholar 

  236. Bagetta G, Nisticó G, Dolly JO. Production of seizures and brain damage in rats by α-dendrotoxin, a selective K+ channel blocker. Neurosci Lett. 1992;139(1):34–40.

    CAS  PubMed  Google Scholar 

  237. Lalic T, Pettingill P, Vincent A, Capogna M. Human limbic encephalitis serum enhances hippocampal mossy fiber-CA3 pyramidal cell synaptic transmission. Epilepsia. 2011;52(1):121–31.

    PubMed  Google Scholar 

  238. Smart SL, Lopantsev V, Zhang C, Robbins CA, Wang H, Chiu S, et al. Deletion of the KV1.1 potassium channel causes epilepsy in mice. Neuron. 1998;20(4):809–19.

    CAS  PubMed  Google Scholar 

  239. Rho JM, Szot P, Tempel BL, Schwartzkroin PA. Developmental seizure susceptibility of Kv1.1 potassium channel knockout mice. Dev Neurosci. 2011;21(3–5):320–7.

    Google Scholar 

  240. Simeone TA, Simeone KA, Samson KK, Kim DY, Rho JM. Loss of the Kv1.1 potassium channel promotes pathologic sharp waves and high frequency oscillations in in vitro hippocampal slices. Neurobiol Dis. 2013;54:68–81.

    CAS  PubMed  Google Scholar 

  241. Lopantsev V, Tempel BL, Schwartzkroin PA. Hyperexcitability of CA3 pyramidal cells in mice lacking the potassium channel subunit Kv1.1. Epilepsia. 2003;44(12):1506–12.

    CAS  PubMed  Google Scholar 

  242. Zhou L, Zhang C-L, Messing A, Chiu SY. Temperature-sensitive neuromuscular transmission in Kv1.1 null mice: role of potassium channels under the myelin sheath in young nerves. The. J Neurosci. 1998;18(18):7200–15.

    CAS  PubMed  Google Scholar 

  243. Zhou L, Messing A, Chiu SY. Determinants of excitability at transition zones in Kv1.1-deficient myelinated nerves. The. J Neurosci. 1999;19(14):5768–81.

    CAS  PubMed  Google Scholar 

  244. Zhang C-L, Messing A, Chiu SY. Specific alteration of spontaneous GABAergic inhibition in cerebellar Purkinje cells in mice lacking the potassium channel Kv1.1. The. J Neurosci. 1999;19(8):2852–64.

    CAS  PubMed  Google Scholar 

  245. Kopp-Scheinpflug C, Fuchs K, Lippe WR, Tempel BL, Rübsamen R. Decreased temporal precision of auditory signaling in Kcna1-null mice: an electrophysiological study in vivo. J Neurosci. 2003;23(27):9199–207.

    CAS  PubMed  Google Scholar 

  246. Baraban SC, Southwell DG, Estrada RC, Jones DL, Sebe JY, Alfaro-Cervello C, et al. Reduction of seizures by transplantation of cortical GABAergic interneuron precursors into Kv1.1 mutant mice. Proc Natl Acad Sci. 2009;106(36):15472–7.

    CAS  PubMed  Google Scholar 

  247. Wykes RC, Heeroma JH, Mantoan L, Zheng K, MacDonald DC, Deisseroth K, et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med. 2012;4(161):161ra52.

    Google Scholar 

  248. Chen G, Gao W, Reinert KC, Popa LS, Hendrix CM, Ross ME, et al. Involvement of Kv1 potassium channels in spreading acidification and depression in the cerebellar cortex. J Neurophys. 2005;94(2):1287–98.

    CAS  Google Scholar 

  249. Glasscock E, Qian J, Yoo JW, Noebels JL. Masking epilepsy by combining two epilepsy genes. Nat Neurosci. 2007;10(12):1554–8.

    CAS  PubMed  Google Scholar 

  250. Southan AP, Robertson B. Electrophysiological characterization of voltage-gated K+ currents in cerebellar basket and Purkinje cells: Kv1 and Kv3 channel subfamilies are present in basket cell nerve terminals. J Neurosci. 2000;20(1):114–22.

    CAS  PubMed  Google Scholar 

  251. Rhodes KJ, Strassle BW, Monaghan MM, Bekele-Arcuri Z, Matos MF, Trimmer JS. Association and colocalization of the Kvβ1 and Kvβ2 β-subunits with Kv1 α-subunits in mammalian brain K+ channel complexes. J Neurosci. 1997;17(21):8246–58.

    CAS  PubMed  Google Scholar 

  252. Wang H, Kunkel D, Schwartzkroin P, Tempel B. Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain. The. J Neurosci. 1994;14(8):4588–99.

    CAS  PubMed  Google Scholar 

  253. Wang H, Kunkel DD, Martin TM, Schwartzkroin PA, Tempel BL. Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons. 1993;365(6441):75–9.

    CAS  Google Scholar 

  254. Monaghan MM, Trimmer JS, Rhodes KJ. Experimental localization of Kv1 family voltage-gated K+ channel α and β subunits in rat hippocampal formation. J Neurosci. 2001;21(16):5973–83.

    CAS  PubMed  Google Scholar 

  255. Tsaur M-L, Sheng M, Lowenstein DH, Jan YN, Jan LY. Differential expression of K+ channel mRNAs in the rat brain and down-regulation in the hippocampus following seizures. Neuron. 1992;8(6):1055–67.

    CAS  PubMed  Google Scholar 

  256. Brew HM, Gittelman JX, Silverstein RS, Hanks TD, Demas VP, Robinson LC, et al. Seizures and reduced life span in mice lacking the potassium channel subunit Kv1.2, but hypoexcitability and enlarged Kv1 currents in auditory neurons. J Neurophys. 2007;98(3):1501–25.

    CAS  Google Scholar 

  257. Li K-X, Lu Y-M, Xu Z-H, Zhang J, Zhu J-M, Zhang J-M, et al. Neuregulin 1 regulates excitability of fast-spiking neurons through Kv1.1 and acts in epilepsy. Nat Neurosci. 2011;15(2):267–73.

    PubMed  Google Scholar 

  258. Preiningerova JL, Baumhackl U, Csepany T, Czaplinski A, Deisenhammer F, Derfuss T, et al. Recommendations for the use of prolonged-release fampridine in patients with multiple sclerosis (MS). CNS Neurosci Ther. 2013;19(5):302–6.

    CAS  PubMed  Google Scholar 

  259. Wang H-S, Pan Z, Shi W, Brown BS, Wymore RS, Cohen IS, et al. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science. 1998;282(5395):1890–3.

    CAS  PubMed  Google Scholar 

  260. Shah M, Mistry M, Marsh S, Brown D, Delmas P. Molecular correlates of the M-current in cultured rat hippocampal neurons. J Physiol. 2002;544(1):29–37.

    CAS  PubMed  Google Scholar 

  261. Cooper EC, Aldape KD, Abosch A, Barbaro NM, Berger MS, Peacock WS, et al. Colocalization and coassembly of two human brain M-type potassium channel subunits that are mutated in epilepsy. Proc Natl Acad Sci. 2000;97(9):4914–9.

    CAS  PubMed  Google Scholar 

  262. Cooper EC, Harrington E, Jan YN, Jan LY. M channel KCNQ2 subunits are localized to key sites for control of neuronal network oscillations and synchronization in mouse brain. J Neurosci. 2001;21(24):9529–40.

    CAS  PubMed  Google Scholar 

  263. Shah MM, Migliore M, Valencia I, Cooper EC, Brown DA. Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons. Proc Natl Acad Sci. 2008;105(22):7869–74.

    CAS  PubMed  Google Scholar 

  264. Miranda P, Cadaveira-Mosquera A, González-Montelongo R, Villarroel A, González-Hernández T, Lamas JA, et al. The neuronal serum- and glucocorticoid-regulated kinase 1.1 reduces neuronal excitability and protects against seizures through upregulation of the M-current. The. J Neurosci. 2013;33(6):2684–96.

    CAS  PubMed  Google Scholar 

  265. Sun J, Kapur J. M-type potassium channels modulate Schaffer collateral–CA1 glutamatergic synaptic transmission. J Physiol. 2012;590(16):3953–64.

    CAS  PubMed  Google Scholar 

  266. Maslarova A, Salar S, Lapilover E, Friedman A, Veh RW, Heinemann U. Increased susceptibility to acetylcholine in the entorhinal cortex of pilocarpine-treated rats involves alterations in KCNQ channels. Neurobiol Dis. 2013;56:14–24.

    Google Scholar 

  267. Andreasen M, Nedergaard S. Heterogeneous firing behavior during ictal-like epileptiform activity in vitro. J Neurophys. 2012;107(5):1379–92.

    CAS  Google Scholar 

  268. Peña F. Alavez–Pérez N. Epileptiform activity induced by pharmacologic reduction of M–current in the developing hippocampus in vitro. Epilepsia. 2006;47(1):47–54.

    PubMed  Google Scholar 

  269. Otto JF, Yang Y, Frankel WN, Wilcox KS, White HS. Mice carrying the Szt1 mutation exhibit increased seizure susceptibility and altered sensitivity to compounds acting at the M–channel. Epilepsia. 2004;45(9):1009–16.

    PubMed  Google Scholar 

  270. Otto JF, Yang Y, Frankel WN, White HS, Wilcox KS. A spontaneous mutation involving Kcnq2 (Kv7.2) reduces M-current density and spike frequency adaptation in mouse CA1 neurons. The. J Neurosci. 2006;26(7):2053–9.

    CAS  PubMed  Google Scholar 

  271. Otto JF, Singh NA, Dahle EJ, Leppert MF, Pappas CM, Pruess TH, et al. Electroconvulsive seizure thresholds and kindling acquisition rates are altered in mouse models of human Kcnq2 and Kcnq3 mutations for benign familial neonatal convulsions. Epilepsia. 2009;50(7):1752–9.

    CAS  PubMed  Google Scholar 

  272. Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P, Jentsch TJ, et al. A potassium channel mutation in neonatal human epilepsy. Science. 1998;279(5349):403–6.

    CAS  PubMed  Google Scholar 

  273. Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R, et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet. 1998;18(1):25–9.

    CAS  PubMed  Google Scholar 

  274. Singh NA, Westenskow P, Charlier C, Pappas C, Leslie J, Dillon J, et al. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain. 2003;126(12):2726–37.

    PubMed  Google Scholar 

  275. Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE, Leach RJ, et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet. 1998;18(1):53–5.

    CAS  PubMed  Google Scholar 

  276. Hirose S, Zenri F, Akiyoshi H, Fukuma G, Iwata H, Inoue T, et al. A novel mutation of KCNQ3 (c. 925T→ C) in a Japanese family with benign familial neonatal convulsions. Annals of neurology. 2000;47(6):822–6.

    CAS  PubMed  Google Scholar 

  277. Miceli F, Soldovieri MV, Iannotti FA, Barrese V, Ambrosino P, Martire M, et al. The voltage-sensing domain of Kv7.2 channels as a molecular target for epilepsy-causing mutations and anticonvulsants. Frontiers in pharmacology. 2011;2.

  278. Sadewa AH, Sasongko TH, Lee MJ, Daikoku K, Yamamoto A, Yamasaki T, et al. Germ–line mutation of KCNQ2, p. R213W, in a Japanese family with benign familial neonatal convulsion. Pediatr Int. 2008;50(2):167–71.

    CAS  PubMed  Google Scholar 

  279. Ishii A, Fukuma G, Uehara A, Miyajima T, Makita Y, Hamachi A, et al. A de novo KCNQ2 mutation detected in non-familial benign neonatal convulsions. Brain Dev. 2009;31(1):27–33.

    PubMed  Google Scholar 

  280. Dedek K, Fusco L, Teloy N, Steinlein OK. Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2. Epilepsy Res. 2003;54(1):21–7.

    CAS  PubMed  Google Scholar 

  281. Borgatti R, Zucca C, Cavallini A, Ferrario M, Panzeri C, Castaldo P, et al. A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardation. Neurology. 2004;63(1):57–65.

    CAS  PubMed  Google Scholar 

  282. Schmitt B, Wohlrab G, Sander T, Steinlein OK, Hajnal BL. Neonatal seizures with tonic clonic sequences and poor developmental outcome. Epilepsy Res. 2005;65(3):161–8.

    PubMed  Google Scholar 

  283. Steinlein O, Conrad C, Weidner B. Benign familial neonatal convulsions: always benign? Epilepsy Res. 2007;73(3):245–9.

    CAS  PubMed  Google Scholar 

  284. Weckhuysen S, Mandelstam S, Suls A, Audenaert D, Deconinck T, Claes LR, et al. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Annals of neurology. 2012;71(1):15–25.

    CAS  PubMed  Google Scholar 

  285. Dedek K, Kunath B, Kananura C, Reuner U, Jentsch TJ, Steinlein OK. Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proc Natl Acad Sci. 2001;98(21):12272–7.

    CAS  PubMed  Google Scholar 

  286. Wuttke T, Jurkat-Rott K, Paulus W, Garncarek M, Lehmann-Horn F, Lerche H. Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations. Neurology. 2007;69(22):2045–53.

    CAS  PubMed  Google Scholar 

  287. Zhou X, Ma A, Liu X, Huang C, Zhang Y, Shi R, et al. Infantile seizures and other epileptic phenotypes in a Chinese family with a missense mutation of KCNQ2. Eur J Pediatr. 2006;165(10):691–5.

    CAS  PubMed  Google Scholar 

  288. Castaldo P, del Giudice EM, Coppola G, Pascotto A, Annunziato L, Taglialatela M. Benign familial neonatal convulsions caused by altered gating of KCNQ2/KCNQ3 potassium channels. J Neurosci. 2002;22(2):C199.

    Google Scholar 

  289. Uehara A, Nakamura Y, Shioya T, Hirose S, Yasukochi M, Uehara K. Altered KCNQ3 potassium channel function caused by the W309R pore-helix mutation found in human epilepsy. J Membr Biol. 2008;222(2):55–63.

    CAS  PubMed  Google Scholar 

  290. Volkers L, Rook MB, Das JH, Verbeek NE, Groenewegen WA, van Kempen MJ, et al. Functional analysis of novel KCNQ2 mutations found in patients with benign familial neonatal convulsions. Neurosci Lett. 2009;462(1):24–9.

    CAS  PubMed  Google Scholar 

  291. Lerche H, Biervert C, Alekov A, Schleithoff L, Lindner M, Klingler W, et al. A reduced K+ current due to a novel mutation in KCNQ 2 causes neonatal convulsions. Annals of neurology. 1999;46(3):305–12.

    CAS  PubMed  Google Scholar 

  292. Schwake M, Pusch M, Kharkovets T, Jentsch TJ. Surface expression and single channel properties of KCNQ2/KCNQ3, M-type K+ channels involved in epilepsy. J Biol Chem. 2000;275(18):13343–8.

    CAS  PubMed  Google Scholar 

  293. Chung HJ, Jan YN, Jan LY. Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains. Proc Natl Acad Sci. 2006;103(23):8870–5.

    CAS  PubMed  Google Scholar 

  294. Su J, Cao X, Wang K. A novel degradation signal derived from distal C-terminal frameshift mutations of KCNQ2 protein which cause neonatal epilepsy. J Biol Chem. 2011;286(50):42949–58.

    CAS  PubMed  Google Scholar 

  295. Singh NA, Otto JF, Jill Dahle E, Pappas C, Leslie JD, Vilaythong A, et al. Mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsions show seizures and neuronal plasticity without synaptic reorganization. J Physiol. 2008;586(14):3405–23.

    CAS  PubMed  Google Scholar 

  296. Blackburn–Munro G, Dalby–Brown W, Mirza N, Mikkelsen J, Blackburn–Munro R. Retigabine: chemical synthesis to clinical application. CNS Drug Reviews. 2005;11(1):1–20.

    PubMed  Google Scholar 

  297. Orhan G, Wuttke TV, Nies AT, Schwab M, Lerche H. Retigabine/ezogabine, a KCNQ/KV7 channel opener: pharmacological and clinical data. Expert Opin Pharmacother. 2012;13(12):1807–16.

    CAS  PubMed  Google Scholar 

  298. Weisenberg JL, Wong M. Profile of ezogabine (retigabine) and its potential as an adjunctive treatment for patients with partial-onset seizures. Neuropsychiatr Dis Treat. 2011;7:409.

    CAS  PubMed Central  PubMed  Google Scholar 

  299. Amabile CM, Vasudevan A. Ezogabine: A novel antiepileptic for adjunctive treatment of partial–onset seizures. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2013;33(2):187–94.

    CAS  Google Scholar 

  300. Tober C, Rostock A, Rundfeldt C, Bartsch R. D-23129: a potent anticonvulsant in the amygdala kindling model of complex partial seizures. Eur J Pharmacol. 1996;303(3):163–9.

    CAS  PubMed  Google Scholar 

  301. Rostock A, Tober C, Rundfeldt C, Bartsch R, Engel J, Polymeropoulos EE, et al. D-23129: a new anticonvulsant with a broad spectrum activity in animal models of epileptic seizures. Epilepsy Res. 1996;23(3):211–23.

    CAS  PubMed  Google Scholar 

  302. Brodie M, Lerche H, Gil-Nagel A, Elger C, Hall S, Shin P, et al. Efficacy and safety of adjunctive ezogabine (retigabine) in refractory partial epilepsy. Neurology. 2010;75(20):1817–24.

    CAS  PubMed  Google Scholar 

  303. French J, Abou-Khalil B, Leroy R, Yacubian E, Shin P, Hall S, et al. Randomized, double-blind, placebo-controlled trial of ezogabine (retigabine) in partial epilepsy. Neurology. 2011;76(18):1555–63.

    CAS  PubMed  Google Scholar 

  304. Porter R, Partiot A, Sachdeo R, Nohria V, Alves W. Randomized, multicenter, dose-ranging trial of retigabine for partial-onset seizures. Neurology. 2007;68(15):1197–204.

    CAS  PubMed  Google Scholar 

  305. Tatulian L, Delmas P, Abogadie F, Brown D. Activation of expressed KCNQ potassium currents and native neuronal M-type potassium currents by the anti-convulsant drug retigabine. J Neurosci. 2001;21(15):5535–45.

    CAS  PubMed  Google Scholar 

  306. Wuttke TV, Seebohm G, Bail S, Maljevic S, Lerche H. The new anticonvulsant retigabine favors voltage-dependent opening of the Kv7.2 (KCNQ2) channel by binding to its activation gate. Mol Pharmacol. 2005;67(4):1009–17.

    CAS  PubMed  Google Scholar 

  307. Dalby-Brown W, Jessen C, Hougaard C, Jensen ML, Jacobsen TA, Nielsen KS, et al. Characterization of a novel high potency positive modulator of Kv7 channels. Eur J Pharmacol. 2013;709(1-3):52–63.

    Google Scholar 

  308. Qi J, Zhang F, Mi Y, Fu Y, Xu W, Zhang D, et al. Design, synthesis and biological activity of pyrazolo[1,5-a]pyrimidin-7(4H)-ones as novel Kv7/KCNQ potassium channel activators. Eur J Med Chem. 2011;46(3):934–43.

    CAS  PubMed  Google Scholar 

  309. Kasteleijn-Nolst Trenité DG, Biton V, French JA, Abou-Khalil B, Rosenfeld WE, Diventura B, et al. Kv7 potassium channel activation with ICA-105665 reduces photoparoxysmal EEG responses in patients with epilepsy. Epilepsia. 2013;54(8):1437–43.

  310. Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov. 2009;8(12):982–1001.

    CAS  PubMed Central  PubMed  Google Scholar 

  311. Roeloffs R, Wickenden AD, Crean C, Werness S, McNaughton-Smith G, Stables J, et al. In vivo profile of ICA-27243 [N-(6-chloro-pyridin-3-yl)-3, 4-difluoro-benzamide], a potent and selective KCNQ2/Q3 (Kv7.2/Kv7.3) activator in rodent anticonvulsant models. J Pharmacol Exp Ther. 2008;326(3):818–28.

    CAS  PubMed  Google Scholar 

  312. Hirano K, Kuratani K, Fujiyoshi M, Tashiro N, Hayashi E, Kinoshita M. Kv7.2–7.5 voltage-gated potassium channel (KCNQ2–5) opener, retigabine, reduces capsaicin-induced visceral pain in mice. Neurosci Lett. 2007;413(2):159–62.

    CAS  PubMed  Google Scholar 

  313. Munro G, Dalby-Brown W. Kv7 (KCNQ) channel modulators and neuropathic pain. J Med Chem. 2007;50(11):2576–82.

    CAS  PubMed  Google Scholar 

  314. Bi Y, Chen H, Su J, Cao X, Bian X, Wang K. Visceral hyperalgesia induced by forebrain-specific suppression of native Kv7/KCNQ/M-current in mice. Molecular pain. 2011;7(1):84.

    CAS  PubMed Central  PubMed  Google Scholar 

  315. Li S, Choi V, Tzounopoulos T. Pathogenic plasticity of Kv7.2/3 channel activity is essential for the induction of tinnitus. Proc Natl Acad Sci. 2013;110(24):9980–5.

    CAS  PubMed  Google Scholar 

  316. Redrobe JP, Nielsen AN. Effects of neuronal Kv7 potassium channel activators on hyperactivity in a rodent model of mania. Behav Brain Res. 2009;198(2):481–5.

    CAS  PubMed  Google Scholar 

  317. Sotty F, Damgaard T, Montezinho LP, Mørk A, Olsen CK, Bundgaard C, et al. Antipsychotic-like effect of retigabine [N-(2-amino-4-(fluorobenzylamino)-phenyl) carbamic acid ester], a KCNQ potassium channel opener, via modulation of mesolimbic dopaminergic neurotransmission. J Pharmacol Exp Ther. 2009;328(3):951–62.

    CAS  PubMed  Google Scholar 

  318. Stöllberger C, Finsterer J. Cardiorespiratory findings in sudden unexplained/unexpected death in epilepsy (SUDEP). Epilepsy research. 2004;59(1):51–60.

    PubMed  Google Scholar 

  319. Goldman A, Glasscock E, Yoo J, Chen T, Klassen T, Noebels J. Arrhythmia in heart and brain: KCNQ1 mutations link epilepsy and sudden unexplained death. Science translational medicine. 2009;1(2):2ra6.

    Google Scholar 

  320. Nashef L, Hindocha N, Makoff A. Risk factors in sudden death in epilepsy (SUDEP): the quest for mechanisms. Epilepsia. 2007;48(5):859–71.

    PubMed  Google Scholar 

  321. Tomson T, Nashef L, Ryvlin P. Sudden unexpected death in epilepsy: current knowledge and future directions. Lancet Neurol. 2008;7(11):1021–31.

    PubMed  Google Scholar 

  322. Glasscock E, Yoo JW, Chen TT, Klassen TL, Noebels JL. Kv1.1 potassium channel deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for sudden unexplained death in epilepsy. The. J Neurosci. 2010;30(15):5167–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  323. Monaghan MM, Menegola M, Vacher H, Rhodes KJ, Trimmer JS. Altered expression and localization of hippocampal A-type potassium channel subunits in the pilocarpine-induced model of temporal lobe epilepsy. Neuroscience. 2008;156(3):550–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  324. Lau D, de Miera EV-S, Contreras D, Ozaita A, Harvey M, Chow A, et al. Impaired fast-spiking, suppressed cortical inhibition, and increased susceptibility to seizures in mice lacking Kv3.2 K+ channel proteins. The. J Neurosci. 2000;20(24):9071–85.

    CAS  PubMed  Google Scholar 

  325. Barnwell LFS, Lugo JN, Lee WL, Willis SE, Gertz SJ, Hrachovy RA, et al. Kv4.2 knockout mice demonstrate increased susceptibility to convulsant stimulation. Epilepsia. 2009;50(7):1741–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  326. Lugo JN, Barnwell LF, Ren Y, Lee WL, Johnston LD, Kim R, et al. Altered phosphorylation and localization of the A–type channel, Kv4.2 in status epilepticus. J Neurochem. 2008;106(4):1929–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  327. Aronica E, Boer K, Doorn K, Zurolo E, Spliet W, van Rijen P, et al. Expression and localization of voltage dependent potassium channel Kv4.2 in epilepsy associated focal lesions. Neurobiol Dis. 2009;36(1):81–95.

    CAS  PubMed  Google Scholar 

  328. Singh B, Ogiwara I, Kaneda M, Tokonami N, Mazaki E, Baba K, et al. A Kv4.2 truncation mutation in a patient with temporal lobe epilepsy. Neurobiol Dis. 2006;24(2):245–53.

    CAS  PubMed  Google Scholar 

  329. Lei Z, Deng P, Li J, Xu ZC. Alterations of A-type potassium channels in hippocampal neurons after traumatic brain injury. J Neurotrauma. 2012;29(2):235–45.

    PubMed  Google Scholar 

  330. Bernard C, Anderson A, Becker A, Poolos NP, Beck H, Johnston D. Acquired dendritic channelopathy in temporal lobe epilepsy. Science. 2004;305(5683):532–5.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank our colleague Edwin Levitan (University of Pittsburgh School of Medicine), whose input has been essential to our K+ channel work over the years. We would also like to acknowledge the work of current and prior members of the Aizenman Laboratory who have critically contributed to the development of our research program in this area, including Sumon Pal, BethAnn McLaughlin, Megan Knoch, Hirokazu Hara, Mandar Aras, Patrick Redman, Callie Norris, Mia Jefferson, Karen Hartnett, Kai He, and Meghan McCord. We thank Shan Ping Yu (Emory University), Dennis Choi (SUNY, Stony Brook), and John Cidlowski (NIEHS) for illuminating discussions during our early work in this field. Finally, we thank Dandan Sun and Kristopher T. Kahle for inviting us to contribute to this special issue of Translational Stroke Research. Our work has been supported by the National Institutes of Health (grant NS043277). Ms. Hegde Shah is supported by a predoctoral award from the American Heart Association (12PRE11070001).

Conflict of Interest

Niyathi Hegde Shah and Elias Aizenman declare that they have no conflict of interest.

Compliance with Ethics Requirements

This is a review article and thus there are no new experiments described that utilize human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Niyathi Hegde Shah or Elias Aizenman.

Additional information

Invited review for Special Issue: “Ion transporters and glutamate receptor-independent mechanisms for ischemic and/or traumatic brain injury.” Guest editors: Dandan Sun & Kristopher Kahle, Translational Stroke Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, N.H., Aizenman, E. Voltage-Gated Potassium Channels at the Crossroads of Neuronal Function, Ischemic Tolerance, and Neurodegeneration. Transl. Stroke Res. 5, 38–58 (2014). https://doi.org/10.1007/s12975-013-0297-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-013-0297-7

Keywords

Navigation