Skip to main content
Log in

Mitochondrial Dysfunction and NAD+ Metabolism Alterations in the Pathophysiology of Acute Brain Injury

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Mitochondrial dysfunction is commonly believed to be one of the major players in mechanisms of brain injury. For several decades, pathologic mitochondrial calcium overload and associated opening of the mitochondrial permeability transition (MPT) pore were considered a detrimental factor causing mitochondrial damage and bioenergetics failure. Mitochondrial and cellular bioenergetic metabolism depends on the enzymatic reactions that require NAD+ or its reduced form NADH as cofactors. Recently, it was shown that NAD+ also has an important function as a substrate for several NAD+ glycohydrolases whose overactivation can contribute to cell death mechanisms. Furthermore, downstream metabolites of NAD+ catabolism can also adversely affect cell viability. In contrast to the negative effects of NAD+-catabolizing enzymes, enzymes that constitute the NAD+ biosynthesis pathway possess neuroprotective properties. In the first part of this review, we discuss the role of MPT in acute brain injury and its role in mitochondrial NAD+ metabolism. Next, we focus on individual NAD+ glycohydrolases, both cytosolic and mitochondrial, and their role in NAD+ catabolism and brain damage. Finally, we discuss the potential effects of downstream products of NAD+ degradation and associated enzymes as well as the role of NAD+ resynthesis enzymes as potential therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kristian T. Metabolic stages, mitochondria and calcium in hypoxic/ischemic brain damage. Cell Calcium. 2004;36(3–4):221–33.

    PubMed  CAS  Google Scholar 

  2. Beal MF. Mitochondria take center stage in aging and neurodegeneration. Ann Neurol. 2005;58(4):495–505.

    PubMed  CAS  Google Scholar 

  3. Sullivan PG, Rabchevsky AG, Waldmeier PC, Springer JE. Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res. 2005;79(1–2):231–9.

    PubMed  CAS  Google Scholar 

  4. Stavrovskaya IG, Kristal BS. The powerhouse takes control of the cell: is the mitochondrial permeability transition a viable therapeutic target against neuronal dysfunction and death? Free Radic Biol Med. 2005;38(6):687–97.

    PubMed  CAS  Google Scholar 

  5. Swerdlow RH. Brain aging, Alzheimer's disease, and mitochondria. Biochim Biophys Acta. 2011;1812(12):1630–9.

    PubMed  CAS  Google Scholar 

  6. Perez-Pinzon MA, Stetler RA, Fiskum G. Novel mitochondrial targets for neuroprotection. J Cereb Blood Flow Metab. 2012;32(7):1362–76.

    PubMed  CAS  Google Scholar 

  7. Chaturvedi RK, Flint Beal M. Mitochondrial diseases of the brain. Free Radic Biol Med. 2013;63:1–29.

    Google Scholar 

  8. Kristian T, Gido G, Kuroda S, Schutz A, Siesjo BK. Calcium metabolism of focal and penumbral tissues in rats subjected to transient middle cerebral artery occlusion. Exp Brain Res. 1998;120(4):503–9.

    PubMed  CAS  Google Scholar 

  9. Silver IA, Erecinska M. Ion homeostasis in rat brain in vivo: intra- and extracellular [Ca2+] and [H+] in the hippocampus during recovery from short-term, transient ischemia. J Cereb Blood Flow Metab. 1992;12(5):759–72.

    PubMed  CAS  Google Scholar 

  10. Dux E, Mies G, Hossmann KA, Siklos L. Calcium in the mitochondria following brief ischemia of gerbil brain. Neurosci Lett. 1987;78(3):295–300.

    PubMed  CAS  Google Scholar 

  11. Zaidan E, Sims NR. The calcium content of mitochondria from brain subregions following short-term forebrain ischemia and recirculation in the rat. J Neurochem. 1994;63(5):1812–9.

    PubMed  CAS  Google Scholar 

  12. Sims NR, Pulsinelli WA. Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat. J Neurochem. 1987;49(5):1367–74.

    PubMed  CAS  Google Scholar 

  13. Fujimura M, Morita-Fujimura Y, Murakami K, Kawase M, Chan PH. Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 1998;18(11):1239–47.

    PubMed  CAS  Google Scholar 

  14. Perez-Pinzon MA, Xu GP, Born J, Lorenzo J, Busto R, Rosenthal M, et al. Cytochrome C is released from mitochondria into the cytosol after cerebral anoxia or ischemia. J Cereb Blood Flow Metab. 1999;19(1):39–43.

    PubMed  CAS  Google Scholar 

  15. Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, Chan PH. Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J Neurosci. 1999;19(22):RC39.

    PubMed  CAS  Google Scholar 

  16. Ouyang YB, Tan Y, Comb M, Liu CL, Martone ME, Siesjo BK, et al. Survival- and death-promoting events after transient cerebral ischemia: phosphorylation of Akt, release of cytochrome C and activation of caspase-like proteases. J Cereb Blood Flow Metab. 1999;19(10):1126–35.

    PubMed  CAS  Google Scholar 

  17. Nakahara I, Kikuchi H, Taki W, Nishi S, Kito M, Yonekawa Y, et al. Changes in major phospholipids of mitochondria during postischemic reperfusion in rat brain. J Neurosurg. 1992;76(2):244–50.

    PubMed  CAS  Google Scholar 

  18. Gilboe DD, Kintner D, Fitzpatrick JH, Emoto SE, Esanu A, Braquet PG, et al. Recovery of postischemic brain metabolism and function following treatment with a free radical scavenger and platelet-activating factor antagonists. J Neurochem. 1991;56(1):311–9.

    PubMed  CAS  Google Scholar 

  19. Wagner KR, Kleinholz M, Myers RE. Delayed decreases in specific brain mitochondrial electron transfer complex activities and cytochrome concentrations following anoxia/ischemia. J Neurol Sci. 1990;100(1–2):142–51.

    PubMed  CAS  Google Scholar 

  20. Allen KL, Almeida A, Bates TE, Clark JB. Changes of respiratory chain activity in mitochondrial and synaptosomal fractions isolated from the gerbil brain after graded ischaemia. J Neurochem. 1995;64(5):2222–9.

    PubMed  CAS  Google Scholar 

  21. Bernardi P. The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim Biophys Acta. 1996;1275(1–2):5–9.

    PubMed  Google Scholar 

  22. Siesjo BK, Elmer E, Janelidze S, Keep M, Kristian T, Ouyang YB, et al. Role and mechanisms of secondary mitochondrial failure. Acta neurochirurgica Supplement. 1999;73:7–13.

    PubMed  CAS  Google Scholar 

  23. Knott AB, Bossy-Wetzel E. Impairing the mitochondrial fission and fusion balance: a new mechanism of neurodegeneration. Ann N Y Acad Sci. 2008;1147:283–92.

    PubMed  CAS  Google Scholar 

  24. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E. Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci. 2008;9(7):505–18.

    PubMed  CAS  Google Scholar 

  25. Berman SB, Pineda FJ, Hardwick JM. Mitochondrial fission and fusion dynamics: the long and short of it. Cell Death Differ. 2008;15(7):1147–52.

    PubMed  CAS  Google Scholar 

  26. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337(6098):1062–5.

    PubMed  CAS  Google Scholar 

  27. Perkins G, Bossy-Wetzel E, Ellisman MH. New insights into mitochondrial structure during cell death. Exp Neurol. 2009;218(2):183–92.

    PubMed  CAS  Google Scholar 

  28. Anne Stetler R, Leak RK, Gao Y, Chen J. The dynamics of the mitochondrial organelle as a potential therapeutic target. J Cereb Blood Flow Metab. 2013;33(1):22–32.

    PubMed  CAS  Google Scholar 

  29. Reddy PH, Reddy TP, Manczak M, Calkins MJ, Shirendeb U, Mao P. Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res Rev. 2011;67(1–2):103–18.

    PubMed  CAS  Google Scholar 

  30. Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther. 2012;342(3):619–30.

    PubMed  CAS  Google Scholar 

  31. Skaper SD. Poly(ADP-ribose) polymerase-1 in acute neuronal death and inflammation: a strategy for neuroprotection. Ann N Y Acad Sci. 2003;993:217–28. discussion 87–8.

    PubMed  CAS  Google Scholar 

  32. Kauppinen TM, Swanson RA. The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience. 2007;145(4):1267–72.

    PubMed  CAS  Google Scholar 

  33. Ma Y, Chen H, He X, Nie H, Hong Y, Sheng C, et al. NAD+ metabolism and NAD(+)-dependent enzymes: promising therapeutic targets for neurological diseases. Current drug targets. 2012;13(2):222–9.

    PubMed  CAS  Google Scholar 

  34. Zoratti M, Szabo I. The mitochondrial permeability transition. Biochim Biophys Acta. 1995;1241(2):139–76.

    PubMed  Google Scholar 

  35. Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev. 1999;79(4):1127–55.

    PubMed  CAS  Google Scholar 

  36. Bernardi P, Petronilli V, Di Lisa F, Forte M. A mitochondrial perspective on cell death. Trends Biochem Sci. 2001;26(2):112–7.

    PubMed  CAS  Google Scholar 

  37. Crompton M, Barksby E, Johnson N, Capano M. Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie. 2002;84(2–3):143–52.

    PubMed  CAS  Google Scholar 

  38. Halestrap AP, McStay GP, Clarke SJ. The permeability transition pore complex: another view. Biochimie. 2002;84(2–3):153–66.

    PubMed  CAS  Google Scholar 

  39. Kristian T, Weatherby TM, Bates TE, Fiskum G. Heterogeneity of the calcium-induced permeability transition in isolated non-synaptic brain mitochondria. J Neurochem. 2002;83(6):1297–308.

    PubMed  CAS  Google Scholar 

  40. Chalmers S, Nicholls DG. The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem. 2003;278(21):19062–70.

    PubMed  CAS  Google Scholar 

  41. Kristian T, Gertsch J, Bates TE, Siesjo BK. Characteristics of the calcium-triggered mitochondrial permeability transition in nonsynaptic brain mitochondria: effect of cyclosporin A and ubiquinone O. J Neurochem. 2000;74(5):1999–2009.

    PubMed  CAS  Google Scholar 

  42. Brustovetsky N, Brustovetsky T, Purl KJ, Capano M, Crompton M, Dubinsky JM. Increased susceptibility of striatal mitochondria to calcium-induced permeability transition. J Neurosci. 2003;23(12):4858–67.

    PubMed  CAS  Google Scholar 

  43. Brown MR, Sullivan PG, Geddes JW. Synaptic mitochondria are more susceptible to Ca2+ overload than nonsynaptic mitochondria. J Biol Chem. 2006;281(17):11658–68.

    PubMed  CAS  Google Scholar 

  44. Di Lisa F, Menabo R, Canton M, Barile M, Bernardi P. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem. 2001;276(4):2571–5.

    PubMed  Google Scholar 

  45. Kristian T, Fiskum G. A fluorescence-based technique for screening compounds that protect against damage to brain mitochondria. Brain Res Brain Res Protoc. 2004;13(3):176–82.

    PubMed  CAS  Google Scholar 

  46. Kristian T, Bernardi P, Siesjo BK. Acidosis promotes the permeability transition in energized mitochondria: implications for reperfusion injury. J Neurotrauma. 2001;18(10):1059–74.

    PubMed  CAS  Google Scholar 

  47. Garcia JH, Cox JV, Hudgins WR. Ultrastructure of the microvasculature in experimental cerebral infarction. Acta neuropathologica. 1971;18(4):273–85.

    PubMed  CAS  Google Scholar 

  48. Garcia JH, Kalimo H, Kamijyo Y, Trump BF. Cellular events during partial cerebral ischemia. Virchows Archiv B: Cell pathology. 1977;25(3):191–206.

    CAS  Google Scholar 

  49. Petito CK. Transformation of postischemic perineuronal glial cells. I. Electron microscopic studies. J Cereb Blood Flow Metab. 1986;6(5):616–24.

    PubMed  CAS  Google Scholar 

  50. Pantoni L, Garcia JH, Gutierrez JA. Cerebral white matter is highly vulnerable to ischemia. Stroke. 1996;27(9):1641–6. discussion 7.

    PubMed  CAS  Google Scholar 

  51. Solenski NJ, diPierro CG, Trimmer PA, Kwan AL, Helm GA. Ultrastructural changes of neuronal mitochondria after transient and permanent cerebral ischemia. Stroke. 2002;33(3):816–24.

    PubMed  Google Scholar 

  52. Uchino H, Minamikawa-Tachino R, Kristian T, Perkins G, Narazaki M, Siesjo BK, et al. Differential neuroprotection by cyclosporin A and FK506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochondrial permeability transition. Neurobiol Dis. 2002;10(3):219–33.

    PubMed  CAS  Google Scholar 

  53. Petito CK, Babiak T. Early proliferative changes in astrocytes in postischemic noninfarcted rat brain. Ann Neurol. 1982;11(5):510–8.

    PubMed  CAS  Google Scholar 

  54. Uchino H, Elmer E, Uchino K, Lindvall O, Siesjo BK. Cyclosporin A dramatically ameliorates CA1 hippocampal damage following transient forebrain ischaemia in the rat. Acta Physiol Scand. 1995;155(4):469–71.

    PubMed  CAS  Google Scholar 

  55. Uchino H, Elmer E, Uchino K, Li PA, He QP, Smith ML, et al. Amelioration by cyclosporin A of brain damage in transient forebrain ischemia in the rat. Brain Res. 1998;812(1–2):216–26.

    PubMed  CAS  Google Scholar 

  56. Friberg H, Ferrand-Drake M, Bengtsson F, Halestrap AP, Wieloch T. Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death. J Neurosci. 1998;18(14):5151–9.

    PubMed  CAS  Google Scholar 

  57. Yoshimoto T, Siesjo BK. Posttreatment with the immunosuppressant cyclosporin A in transient focal ischemia. Brain Res. 1999;839(2):283–91.

    PubMed  CAS  Google Scholar 

  58. Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P. Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J Biol Chem. 2005;280(19):18558–61.

    PubMed  CAS  Google Scholar 

  59. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434(7033):658–62.

    PubMed  CAS  Google Scholar 

  60. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434(7033):652–8.

    PubMed  CAS  Google Scholar 

  61. Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci U S A. 2005;102(34):12005–10.

    PubMed  CAS  Google Scholar 

  62. Alano CC, Tran A, Tao R, Ying W, Karliner JS, Swanson RA. Differences among cell types in NAD(+) compartmentalization: a comparison of neurons, astrocytes, and cardiac myocytes. J Neurosci Res. 2007;85(15):3378–85.

    PubMed  CAS  Google Scholar 

  63. Petronilli V, Nicolli A, Costantini P, Colonna R, Bernardi P. Regulation of the permeability transition pore, a voltage-dependent mitochondrial channel inhibited by cyclosporin A. Biochim Biophys Acta. 1994;1187(2):255–9.

    PubMed  CAS  Google Scholar 

  64. Shalbuyeva N, Brustovetsky T, Bolshakov A, Brustovetsky N. Calcium-dependent spontaneously reversible remodeling of brain mitochondria. J Biol Chem. 2006;281(49):37547–58.

    PubMed  CAS  Google Scholar 

  65. Barsukova A, Komarov A, Hajnoczky G, Bernardi P, Bourdette D, Forte M. Activation of the mitochondrial permeability transition pore modulates Ca2+ responses to physiological stimuli in adult neurons. Eur J Neurosci. 2011;33(5):831–42.

    PubMed  Google Scholar 

  66. Fiskum G, Danilov CA, Mehrabian Z, Bambrick LL, Kristian T, McKenna MC, et al. Postischemic oxidative stress promotes mitochondrial metabolic failure in neurons and astrocytes. Ann N Y Acad Sci. 2008;1147:129–38.

    PubMed  CAS  Google Scholar 

  67. Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxidants & redox signaling. 2008;10(2):179–206.

    CAS  Google Scholar 

  68. Alano CC, Ying W, Swanson RA. Poly(ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition. J Biol Chem. 2004;279(18):18895–902.

    PubMed  CAS  Google Scholar 

  69. Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, Swanson RA. NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci. 2010;30(8):2967–78.

    PubMed  CAS  Google Scholar 

  70. Chance B, Thorell B. Localization and kinetics of reduced pyridine nucleotide in living cells by microfluorometry. J Biol Chem. 1959;234:3044–50.

    PubMed  CAS  Google Scholar 

  71. Pittelli M, Formentini L, Faraco G, Lapucci A, Rapizzi E, Cialdai F, et al. Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool. J Biol Chem. 2010;285(44):34106–14.

    PubMed  CAS  Google Scholar 

  72. Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell. 2007;130(6):1095–107.

    PubMed  CAS  Google Scholar 

  73. Sauve AA. NAD+ and vitamin B3: from metabolism to therapies. J Pharmacol Exp Ther. 2008;324(3):883–93.

    PubMed  CAS  Google Scholar 

  74. Silver I, Erecinska M. Oxygen and ion concentrations in normoxic and hypoxic brain cells. Adv Exp Med Biol. 1998;454:7–16.

    PubMed  CAS  Google Scholar 

  75. Pysh JJ, Khan T. Variations in mitochondrial structure and content of neurons and neuroglia in rat brain: an electron microscopic study. Brain Res. 1972;36(1):1–18.

    PubMed  CAS  Google Scholar 

  76. Deutsch C, Erecinska M, Werrlein R, Silver IA. Cellular energy metabolism, trans-plasma and trans-mitochondrial membrane potentials, and pH gradients in mouse neuroblastoma. Proc Natl Acad Sci U S A. 1979;76(5):2175–9.

    PubMed  CAS  Google Scholar 

  77. Todisco S, Agrimi G, Castegna A, Palmieri F. Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae. J Biol Chem. 2006;281(3):1524–31.

    PubMed  CAS  Google Scholar 

  78. Neuburger M, Douce R. Slow passive diffusion of NAD+ between intact isolated plant mitochondria and suspending medium. Biochem J. 1983;216(2):443–50.

    PubMed  CAS  Google Scholar 

  79. Di Martino C, Pallota ML. Mitochondria-localized biosynthesis by nicotinamide mononucleotide adenylyltransferase in Jerusalem artichoke (Helianthus tuberosus L.) heterotrophic tissues. Planta. 2011;234(4):657–70.

    PubMed  Google Scholar 

  80. Palmieri F, Rieder B, Ventrella A, Blanco E, Do PT, Nunes-Nesi A, et al. Molecular identification and functional characterization of Arabidopsis thaliana mitochondrial and chloroplastic NAD+ carrier proteins. J Biol Chem. 2009;284(45):31249–59.

    PubMed  CAS  Google Scholar 

  81. Rustin P, Parfait B, Chretien D, Bourgeron T, Djouadi F, Bastin J, et al. Fluxes of nicotinamide adenine dinucleotides through mitochondrial membranes in human cultured cells. J Biol Chem. 1996;271(25):14785–90.

    PubMed  CAS  Google Scholar 

  82. Barile M, Passarella S, Danese G, Quagliariello E. Rat liver mitochondria can synthesize nicotinamide adenine dinucleotide from nicotinamide mononucleotide and ATP via a putative matrix nicotinamide mononucleotide adenylyltransferase. Biochem Mol Biol Int. 1996;38(2):297–306.

    PubMed  CAS  Google Scholar 

  83. Koch-Nolte F, Fischer S, Haag F, Ziegler M. Compartmentation of NAD+-dependent signalling. FEBS Lett. 2011;585(11):1651–6.

    PubMed  CAS  Google Scholar 

  84. Houtkooper RH, Canto C, Wanders RJ, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev. 2010;31(2):194–223.

    PubMed  CAS  Google Scholar 

  85. Sauve AA, Wolberger C, Schramm VL, Boeke JD. The biochemistry of sirtuins. Annu Rev Biochem. 2006;75:435–65.

    PubMed  CAS  Google Scholar 

  86. Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007;404(1):1–13.

    PubMed  CAS  Google Scholar 

  87. Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 2004;305(5686):1010–3.

    PubMed  CAS  Google Scholar 

  88. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Molecular biology of the cell. 2005;16(10):4623–35.

    PubMed  CAS  Google Scholar 

  89. Jing E, Gesta S, Kahn CR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell metabolism. 2007;6(2):105–14.

    PubMed  CAS  Google Scholar 

  90. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell. 2003;11(2):437–44.

    PubMed  CAS  Google Scholar 

  91. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107(2):149–59.

    PubMed  CAS  Google Scholar 

  92. Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell. 2006;126(5):941–54.

    PubMed  CAS  Google Scholar 

  93. Liszt G, Ford E, Kurtev M, Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem. 2005;280(22):21313–20.

    PubMed  CAS  Google Scholar 

  94. Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem. 2005;280(14):13560–7.

    PubMed  CAS  Google Scholar 

  95. Feng R, Li S, Li F. Toll-like receptor 4 is involved in ischemic tolerance of postconditioning in hippocampus of tree shrews to thrombotic cerebral ischemia. Brain Res. 2011;1384:118–27.

    PubMed  CAS  Google Scholar 

  96. Morris KC, Lin HW, Thompson JW, Perez-Pinzon MA. Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning. J Cereb Blood Flow Metab. 2011;31(4):1003–19.

    PubMed  CAS  Google Scholar 

  97. Raghavan A, Shah ZA. Sirtuins in neurodegenerative diseases: a biological–chemical perspective. Neuro-degenerative diseases. 2012;9(1):1–10.

    PubMed  CAS  Google Scholar 

  98. Raval AP, Dave KR, Perez-Pinzon MA. Resveratrol mimics ischemic preconditioning in the brain. J Cereb Blood Flow Metab. 2006;26(9):1141–7.

    PubMed  CAS  Google Scholar 

  99. Raval AP, Lin HW, Dave KR, Defazio RA, Della Morte D, Kim EJ, et al. Resveratrol and ischemic preconditioning in the brain. Curr Med Chem. 2008;15(15):1545–51.

    PubMed  CAS  Google Scholar 

  100. Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA. Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience. 2009;159(3):993–1002.

    PubMed  CAS  Google Scholar 

  101. Liu D, Gharavi R, Pitta M, Gleichmann M, Mattson MP. Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromolecular medicine. 2009;11(1):28–42.

    PubMed  CAS  Google Scholar 

  102. Kakefuda K, Fujita Y, Oyagi A, Hyakkoku K, Kojima T, Umemura K, et al. Sirtuin 1 overexpression mice show a reference memory deficit, but not neuroprotection. Biochem Biophys Res Commun. 2009;387(4):8.

    Google Scholar 

  103. Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell. 2006;23(4):607–18.

    PubMed  CAS  Google Scholar 

  104. Ramponi G, Manao G, Camici G. Nonenzymatic acetylation of histones with acetyl phosphate and acetyl adenylate. Biochemistry. 1975;14(12):2681–5.

    PubMed  CAS  Google Scholar 

  105. Paik WK, Pearson D, Lee HW, Kim S. Nonenzymatic acetylation of histones with acetyl-CoA. Biochim Biophys Acta. 1970;213(2):513–22.

    PubMed  CAS  Google Scholar 

  106. Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol. 2007;27(24):8807–14.

    PubMed  CAS  Google Scholar 

  107. Fujino T, Kondo J, Ishikawa M, Morikawa K, Yamamoto TT. Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J Biol Chem. 2001;276(14):11420–6.

    PubMed  CAS  Google Scholar 

  108. Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A. 2008;105(38):14447–52.

    PubMed  CAS  Google Scholar 

  109. Hafner AV, Dai J, Gomes AP, Xiao CY, Palmeira CM, Rosenzweig A, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging. 2010;2(12):914–23.

    PubMed  CAS  Google Scholar 

  110. Verdin E, Dequiedt F, Fischle W, Frye R, Marshall B, North B. Measurement of mammalian histone deacetylase activity. Methods Enzymol. 2004;377:180–96.

    PubMed  CAS  Google Scholar 

  111. Schuetz A, Min J, Antoshenko T, Wang CL, Allali-Hassani A, Dong A, et al. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure. 2007;15(3):377–89.

    PubMed  CAS  Google Scholar 

  112. Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CF, Steegborn C. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol. 2008;382(3):790–801.

    PubMed  CAS  Google Scholar 

  113. Kim SH, Lu HF, Alano CC. Neuronal Sirt3 protects against excitotoxic injury in mouse cortical neuron culture. PLoS One. 2011;6(3):e14731.

    PubMed  CAS  Google Scholar 

  114. Yamada M, Mizuguchi M, Otsuka N, Ikeda K, Takahashi H. Ultrastructural localization of CD38 immunoreactivity in rat brain. Brain Res. 1997;756(1–2):52–60.

    PubMed  CAS  Google Scholar 

  115. Mizuguchi M, Otsuka N, Sato M, Ishii Y, Kon S, Yamada M, et al. Neuronal localization of CD38 antigen in the human brain. Brain Res. 1995;697(1–2):235–40.

    PubMed  CAS  Google Scholar 

  116. Ceni C, Pochon N, Brun V, Muller-Steffner H, Andrieux A, Grunwald D, et al. CD38-dependent ADP-ribosyl cyclase activity in developing and adult mouse brain. Biochem J. 2003;370(Pt 1):175–83.

    PubMed  CAS  Google Scholar 

  117. Verderio C, Bruzzone S, Zocchi E, Fedele E, Schenk U, De Flora A, et al. Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes. J Neurochem. 2001;78(3):646–57.

    PubMed  CAS  Google Scholar 

  118. Mayo L, Jacob-Hirsch J, Amariglio N, Rechavi G, Moutin MJ, Lund FE, et al. Dual role of CD38 in microglial activation and activation-induced cell death. J Immunol. 2008;181(1):92–103.

    PubMed  CAS  Google Scholar 

  119. Matsumura N, Tanuma S. Involvement of cytosolic NAD+ glycohydrolase in cyclic ADP-ribose metabolism. Biochem Biophys Res Commun. 1998;253(2):246–52.

    PubMed  CAS  Google Scholar 

  120. Brailoiu E, Miyamoto MD. Inositol trisphosphate and cyclic adenosine diphosphate-ribose increase quantal transmitter release at frog motor nerve terminals: possible involvement of smooth endoplasmic reticulum. Neuroscience. 2000;95(4):927–31.

    PubMed  CAS  Google Scholar 

  121. Lee HC. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol Rev. 1997;77(4):1133–64.

    PubMed  CAS  Google Scholar 

  122. Higashida H, Salmina AB, Olovyannikova RY, Hashii M, Yokoyama S, Koizumi K, et al. Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system. Neurochem Int. 2007;51(2–4):192–9.

    PubMed  CAS  Google Scholar 

  123. Partida-Sanchez S, Cockayne DA, Monard S, Jacobson EL, Oppenheimer N, Garvy B, et al. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nature medicine. 2001;7(11):1209–16.

    PubMed  CAS  Google Scholar 

  124. Choe CU, Lardong K, Gelderblom M, Ludewig P, Leypoldt F, Koch-Nolte F, et al. CD38 exacerbates focal cytokine production, postischemic inflammation and brain injury after focal cerebral ischemia. PLoS One. 2011;6(5):e19046.

    PubMed  CAS  Google Scholar 

  125. Kristian T, Balan I, Schuh R, Onken M. Mitochondrial dysfunction and nicotinamide dinucleotide catabolism as mechanisms of cell death and promising targets for neuroprotection. J Neurosci Res. 2011;89(12):1946–55.

    PubMed  CAS  Google Scholar 

  126. Ame JC, Spenlehauer C, de Murcia G. The PARP superfamily. BioEssays. 2004;26(8):882–93.

    PubMed  CAS  Google Scholar 

  127. Ha HC, Snyder SH. Poly(ADP-ribose) polymerase-1 in the nervous system. Neurobiol Dis. 2000;7(4):225–39.

    PubMed  CAS  Google Scholar 

  128. Du L, Zhang X, Han YY, Burke NA, Kochanek PM, Watkins SC, et al. Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress. J Biol Chem. 2003;278(20):18426–33.

    PubMed  CAS  Google Scholar 

  129. Dawson VL, Dawson TM. Deadly conversations: nuclear–mitochondrial cross-talk. J Bioenerg Biomembr. 2004;36(4):287–94.

    PubMed  CAS  Google Scholar 

  130. Pieper AA, Blackshaw S, Clements EE, Brat DJ, Krug DK, White AJ, et al. Poly(ADP-ribosyl)ation basally activated by DNA strand breaks reflects glutamate-nitric oxide neurotransmission. Proc Natl Acad Sci U S A. 2000;97(4):1845–50.

    PubMed  CAS  Google Scholar 

  131. Davidovic L, Vodenicharov M, Affar EB, Poirier GG. Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp Cell Res. 2001;268(1):7–13.

    PubMed  CAS  Google Scholar 

  132. Herceg Z, Wang ZQ. Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat Res. 2001;477(1–2):97–110.

    PubMed  CAS  Google Scholar 

  133. Kraus WL, Lis JT. PARP goes transcription. Cell. 2003;113(6):677–83.

    PubMed  CAS  Google Scholar 

  134. Ullrich O, Diestel A, Bechmann I, Homberg M, Grune T, Hass R, et al. Turnover of oxidatively damaged nuclear proteins in BV-2 microglial cells is linked to their activation state by poly-ADP-ribose polymerase. FASEB J. 2001;15(8):1460–2.

    PubMed  CAS  Google Scholar 

  135. Andrabi SA, Kim NS, Yu SW, Wang H, Koh DW, Sasaki M, et al. Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci U S A. 2006;103(48):18308–13.

    PubMed  CAS  Google Scholar 

  136. Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA. Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blood Flow Metab. 1997;17(11):1143–51.

    PubMed  CAS  Google Scholar 

  137. Szabo C, Dawson VL. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia–reperfusion. Trends Pharmacol Sci. 1998;19(7):287–98.

    PubMed  CAS  Google Scholar 

  138. Whalen MJ, Clark RS, Dixon CE, Robichaud P, Marion DW, Vagni V, et al. Reduction of cognitive and motor deficits after traumatic brain injury in mice deficient in poly(ADP-ribose) polymerase. J Cereb Blood Flow Metab. 1999;19(8):835–42.

    PubMed  CAS  Google Scholar 

  139. Chiarugi A, Moskowitz MA. Poly(ADP-ribose) polymerase-1 activity promotes NF-kappaB-driven transcription and microglial activation: implication for neurodegenerative disorders. J Neurochem. 2003;85(2):306–17.

    PubMed  CAS  Google Scholar 

  140. Chiarugi A. Intrinsic mechanisms of poly(ADP-ribose) neurotoxicity: three hypotheses. Neurotoxicology. 2005;26(5):847–55.

    PubMed  CAS  Google Scholar 

  141. Berger F, Ramirez-Hernandez MH, Ziegler M. The new life of a centenarian: signalling functions of NAD(P). Trends Biochem Sci. 2004;29(3):111–8.

    PubMed  CAS  Google Scholar 

  142. Yang J, Klaidman LK, Nalbandian A, Oliver J, Chang ML, Chan PH, et al. The effects of nicotinamide on energy metabolism following transient focal cerebral ischemia in Wistar rats. Neurosci Lett. 2002;333(2):91–4.

    PubMed  CAS  Google Scholar 

  143. Ying W, Chen Y, Alano CC, Swanson RA. Tricarboxylic acid cycle substrates prevent PARP-mediated death of neurons and astrocytes. J Cereb Blood Flow Metab. 2002;22(7):774–9.

    PubMed  CAS  Google Scholar 

  144. Nagayama T, Simon RP, Chen D, Henshall DC, Pei W, Stetler RA, et al. Activation of poly(ADP-ribose) polymerase in the rat hippocampus may contribute to cellular recovery following sublethal transient global ischemia. J Neurochem. 2000;74(4):1636–45.

    PubMed  CAS  Google Scholar 

  145. Paschen W, Olah L, Mies G. Effect of transient focal ischemia of mouse brain on energy state and NAD levels: no evidence that NAD depletion plays a major role in secondary disturbances of energy metabolism. J Neurochem. 2000;75(4):1675–80.

    PubMed  CAS  Google Scholar 

  146. Goto S, Xue R, Sugo N, Sawada M, Blizzard KK, Poitras MF, et al. Poly(ADP-ribose) polymerase impairs early and long-term experimental stroke recovery. Stroke. 2002;33(4):1101–6.

    PubMed  CAS  Google Scholar 

  147. Siegel CS, McCullough LD. NAD+ and nicotinamide: sex differences in cerebral ischemia. Neuroscience. 2013;237:223–31.

    PubMed  CAS  Google Scholar 

  148. Chiarugi A. Poly(ADP-ribose) polymerase: killer or conspirator? The ‘suicide hypothesis’ revisited. Trends Pharmacol Sci. 2002;23(3):122–9.

    PubMed  CAS  Google Scholar 

  149. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science. 2002;297(5579):259–63.

    PubMed  CAS  Google Scholar 

  150. Hong SJ, Dawson TM, Dawson VL. Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci. 2004;25(5):259–64.

    PubMed  CAS  Google Scholar 

  151. Komjati K, Mabley JG, Virag L, Southan GJ, Salzman AL, Szabo C. Poly(ADP-ribose) polymerase inhibition protect neurons and the white matter and regulates the translocation of apoptosis-inducing factor in stroke. Int J Mol Med. 2004;13(3):373–82.

    PubMed  CAS  Google Scholar 

  152. Dumitriu IE, Voll RE, Kolowos W, Gaipl US, Heyder P, Kalden JR, et al. UV irradiation inhibits ABC transporters via generation of ADP-ribose by concerted action of poly(ADP-ribose) polymerase-1 and glycohydrolase. Cell Death Differ. 2004;11(3):314–20.

    PubMed  CAS  Google Scholar 

  153. Moss J, Stanley SJ, Levine RL. Inactivation of bacterial glutamine synthetase by ADP-ribosylation. J Biol Chem. 1990;265(34):21056–60.

    PubMed  CAS  Google Scholar 

  154. Seman M, Adriouch S, Haag F, Koch-Nolte F. Ecto-ADP-ribosyltransferases (ARTs): emerging actors in cell communication and signaling. Curr Med Chem. 2004;11(7):857–72.

    PubMed  CAS  Google Scholar 

  155. Huang HY, Graves DJ, Robson RM, Huiatt TW. ADP-ribosylation of the intermediate filament protein desmin and inhibition of desmin assembly in vitro by muscle ADP-ribosyltransferase. Biochem Biophys Res Commun. 1993;197(2):570–7.

    PubMed  CAS  Google Scholar 

  156. Zolkiewska A, Nightingale MS, Moss J. Molecular characterization of NAD:arginine ADP-ribosyltransferase from rabbit skeletal muscle. Proc Natl Acad Sci U S A. 1992;89(23):11352–6.

    PubMed  CAS  Google Scholar 

  157. Glowacki G, Braren R, Firner K, Nissen M, Kuhl M, Reche P, et al. The family of toxin-related ecto-ADP-ribosyltransferases in humans and the mouse. Protein Sci. 2002;11(7):1657–70.

    PubMed  CAS  Google Scholar 

  158. Okazaki IJ, Moss J. Characterization of glycosylphosphatidylinositiol-anchored, secreted, and intracellular vertebrate mono-ADP-ribosyltransferases. Annu Rev Nutr. 1999;19:485–509.

    PubMed  CAS  Google Scholar 

  159. Moss J, Zolkiewska A, Okazaki I. ADP-ribosylarginine hydrolases and ADP-ribosyltransferases. Partners in ADP-ribosylation cycles. Adv Exp Med Biol. 1997;419:25–33.

    PubMed  CAS  Google Scholar 

  160. Shi W, Gong P, Fan J, Yan YH, Ni L, Wu X, et al. The expression pattern of ADP-ribosyltransferase 3 in rat traumatic brain injury. J Mol Histol. 2012;43(1):37–47.

    PubMed  CAS  Google Scholar 

  161. Matsuyama S, Tsuyama S. Mono-ADP-ribosylation in brain: purification and characterization of ADP-ribosyltransferases affecting actin from rat brain. J Neurochem. 1991;57(4):1380–7.

    PubMed  CAS  Google Scholar 

  162. Coggins PJ, McLean K, Nagy A, Zwiers H. ADP-ribosylation of the neuronal phosphoprotein B-50/GAP-43. J Neurochem. 1993;60(1):368–71.

    PubMed  CAS  Google Scholar 

  163. Benowitz LI, Perrone-Bizzozero NI. The expression of GAP-43 in relation to neuronal growth and plasticity: when, where, how, and why? Prog Brain Res. 1991;89:69–87.

    PubMed  CAS  Google Scholar 

  164. Koch-Nolte F, Adriouch S, Bannas P, Krebs C, Scheuplein F, Seman M, et al. ADP-ribosylation of membrane proteins: unveiling the secrets of a crucial regulatory mechanism in mammalian cells. Annals Med. 2006;38(3):188–99.

    CAS  Google Scholar 

  165. Rankin PW, Jacobson EL, Benjamin RC, Moss J, Jacobson MK. Quantitative studies of inhibitors of ADP-ribosylation in vitro and in vivo. J Biol Chem. 1989;264(8):4312–7.

    PubMed  CAS  Google Scholar 

  166. Banasik M, Komura H, Shimoyama M, Ueda K. Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J Biol Chem. 1992;267(3):1569–75.

    PubMed  CAS  Google Scholar 

  167. Allport JR, Donnelly LE, Hayes BP, Murray S, Rendell NB, Ray KP, et al. Reduction by inhibitors of mono(ADP-ribosyl)transferase of chemotaxis in human neutrophil leucocytes by inhibition of the assembly of filamentous actin. Br J Pharmacol. 1996;118(5):1111–8.

    PubMed  CAS  Google Scholar 

  168. Kim JH, Yenari MA, Giffard RG, Cho SW, Park KA, Lee JE. Agmatine reduces infarct area in a mouse model of transient focal cerebral ischemia and protects cultured neurons from ischemia-like injury. Exp Neurol. 2004;189(1):122–30.

    PubMed  CAS  Google Scholar 

  169. Schuman EM, Meffert MK, Schulman H, Madison DV. An ADP-ribosyltransferase as a potential target for nitric oxide action in hippocampal long-term potentiation. Proc Natl Acad Sci U S A. 1994;91(25):11958–62.

    PubMed  CAS  Google Scholar 

  170. Masmoudi A, Islam F, Mandel P. ADP-ribosylation of highly purified rat brain mitochondria. J Neurochem. 1988;51(1):188–93.

    PubMed  CAS  Google Scholar 

  171. Cervantes-Laurean D, Loflin PT, Minter DE, Jacobson EL, Jacobson MK. Protein modification by ADP-ribose via acid-labile linkages. J Biol Chem. 1995;270(14):7929–36.

    PubMed  CAS  Google Scholar 

  172. McDonald LJ, Moss J. Enzymatic and nonenzymatic ADP-ribosylation of cysteine. Mol Cell Biochem. 1994;138(1–2):221–6.

    PubMed  CAS  Google Scholar 

  173. Ayoub IA, Lee EJ, Ogilvy CS, Beal MF, Maynard KI. Nicotinamide reduces infarction up to two hours after the onset of permanent focal cerebral ischemia in Wistar rats. Neurosci Lett. 1999;259(1):21–4.

    PubMed  CAS  Google Scholar 

  174. Ayoub IA, Maynard KI. Therapeutic window for nicotinamide following transient focal cerebral ischemia. Neuroreport. 2002;13(2):213–6.

    PubMed  CAS  Google Scholar 

  175. Mokudai T, Ayoub IA, Sakakibara Y, Lee EJ, Ogilvy CS, Maynard KI. Delayed treatment with nicotinamide (vitamin B(3)) improves neurological outcome and reduces infarct volume after transient focal cerebral ischemia in Wistar rats. Stroke. 2000;31(7):1679–85.

    PubMed  CAS  Google Scholar 

  176. Spector R. Niacin and niacinamide transport in the central nervous system In vivo studies. J Neurochem. 1979;33(4):895–904.

    PubMed  CAS  Google Scholar 

  177. Klaidman LK, Mukherjee SK, Hutchin TP, Adams JD. Nicotinamide as a precursor for NAD+ prevents apoptosis in the mouse brain induced by tertiary-butylhydroperoxide. Neurosci Lett. 1996;206(1):5–8.

    PubMed  CAS  Google Scholar 

  178. Klaidman L, Morales M, Kem S, Yang J, Chang ML, Adams Jr JD. Nicotinamide offers multiple protective mechanisms in stroke as a precursor for NAD+, as a PARP inhibitor and by partial restoration of mitochondrial function. Pharmacology. 2003;69(3):150–7.

    PubMed  CAS  Google Scholar 

  179. Klaidman LK, Mukherjee SK, Adams Jr JD. Oxidative changes in brain pyridine nucleotides and neuroprotection using nicotinamide. Biochim Biophys Acta. 2001;1525(1–2):136–48.

    PubMed  CAS  Google Scholar 

  180. Balan IS, Fiskum G, Kristian T. Visualization and quantification of NAD(H) in brain sections by a novel histo-enzymatic nitrotetrazolium blue staining technique. Brain Res. 2010;1316:112–9.

    PubMed  CAS  Google Scholar 

  181. Chong ZZ, Lin SH, Maiese K. Nicotinamide modulates mitochondrial membrane potential and cysteine protease activity during cerebral vascular endothelial cell injury. J Vasc Res. 2002;39(2):131–47.

    PubMed  CAS  Google Scholar 

  182. Mukherjee SK, Klaidman LK, Yasharel R, Adams Jr JD. Increased brain NAD prevents neuronal apoptosis in vivo. Eur J Pharmacol. 1997;330(1):27–34.

    PubMed  CAS  Google Scholar 

  183. Ungerstedt JS, Blomback M, Soderstrom T. Nicotinamide is a potent inhibitor of proinflammatory cytokines. Clin Exp Immunol. 2003;131(1):48–52.

    PubMed  CAS  Google Scholar 

  184. Althaus FR, Kleczkowska HE, Malanga M, Muntener CR, Pleschke JM, Ebner M, et al. Poly ADP-ribosylation: a DNA break signal mechanism. Mol Cell Biochem. 1999;193(1–2):5–11.

    PubMed  CAS  Google Scholar 

  185. Alvarez-Gonzalez R, Althaus FR. Poly(ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents. Mutat Res. 1989;218(2):67–74.

    PubMed  CAS  Google Scholar 

  186. Jacobson MK, Smith JY, Mingmuang M, Payne DM, Jacobson EL. Mono- and poly(ADP-ribose) metabolism following DNA damage. Princess Takamatsu Symposia. 1983;13:165–74.

    PubMed  CAS  Google Scholar 

  187. Jagtap P, Szabo C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov. 2005;4(5):421–40.

    PubMed  CAS  Google Scholar 

  188. Cervantes-Laurean D, Jacobson EL, Jacobson MK. Glycation and glycoxidation of histones by ADP-ribose. J Biol Chem. 1996;271(18):10461–9.

    PubMed  CAS  Google Scholar 

  189. Jacobson EL, Cervantes-Laurean D, Jacobson MK. ADP-ribose in glycation and glycoxidation reactions. Adv Exp Med Biol. 1997;419:371–9.

    PubMed  CAS  Google Scholar 

  190. Kwak YG, Park SK, Kim UH, Han MK, Eun JS, Cho KP, et al. Intracellular ADP-ribose inhibits ATP-sensitive K+ channels in rat ventricular myocytes. Am J Physiol. 1996;271(2 Pt 1):C464–8.

    PubMed  CAS  Google Scholar 

  191. Li PL, Zhang DX, Ge ZD, Campbell WB. Role of ADP-ribose in 11,12-EET-induced activation of K(Ca) channels in coronary arterial smooth muscle cells. Am J Physiol Heart Circ Physiol. 2002;282(4):H1229–36.

    PubMed  CAS  Google Scholar 

  192. Kuhn FJ, Heiner I, Luckhoff A. TRPM2: a calcium influx pathway regulated by oxidative stress and the novel second messenger ADP-ribose. Pflugers Archiv. 2005;451(1):212–9.

    PubMed  Google Scholar 

  193. Fernandez A, Ribeiro JM, Costas MJ, Pinto RM, Canales J, Cameselle JC. Specific ADP-ribose pyrophosphatase from Artemia cysts and rat liver: effects of nitroprusside, fluoride and ionic strength. Biochim Biophys Acta. 1996;1290(1):121–7.

    PubMed  Google Scholar 

  194. Ribeiro JM, Cameselle JC, Fernandez A, Canales J, Pinto RM, Costas MJ. Inhibition and ADP-ribose pyrophosphatase-I by nitric-oxide-generating systems: a mechanism linking nitric oxide to processes dependent on free ADP-ribose. Biochem Biophys Res Commun. 1995;213(3):1075–81.

    PubMed  CAS  Google Scholar 

  195. Mildvan AS, Xia Z, Azurmendi HF, Saraswat V, Legler PM, Massiah MA, et al. Structures and mechanisms of Nudix hydrolases. Arch Biochem Biophys. 2005;433(1):129–43.

    PubMed  CAS  Google Scholar 

  196. McLennan AG. The Nudix hydrolase superfamily. Cell Mol Life Sci. 2006;63(2):123–43.

    PubMed  CAS  Google Scholar 

  197. Gasmi L, Cartwright JL, McLennan AG. Cloning, expression and characterization of YSA1H, a human adenosine 5′-diphosphosugar pyrophosphatase possessing a MutT motif. Biochem J. 1999;344(Pt 2):331–7.

    PubMed  CAS  Google Scholar 

  198. Yang H, Slupska MM, Wei YF, Tai JH, Luther WM, Xia YR, et al. Cloning and characterization of a new member of the Nudix hydrolases from human and mouse. J Biol Chem. 2000;275(12):8844–53.

    PubMed  CAS  Google Scholar 

  199. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature. 2001;411(6837):595–9.

    PubMed  CAS  Google Scholar 

  200. Perraud AL, Shen B, Dunn CA, Rippe K, Smith MK, Bessman MJ, et al. NUDT9, a member of the Nudix hydrolase family, is an evolutionarily conserved mitochondrial ADP-ribose pyrophosphatase. J Biol Chem. 2003;278(3):1794–801.

    PubMed  CAS  Google Scholar 

  201. Lin S, Gasmi L, Xie Y, Ying K, Gu S, Wang Z, et al. Cloning, expression and characterisation of a human Nudix hydrolase specific for adenosine 5′-diphosphoribose (ADP-ribose). Biochim Biophys Acta. 2002;1594(1):127–35.

    PubMed  CAS  Google Scholar 

  202. Knowles H, Li Y, Perraud AL. The TRPM2 ion channel, an oxidative stress and metabolic sensor regulating innate immunity and inflammation. Immunol Res. 2013;55(1–3):241–8.

    PubMed  CAS  Google Scholar 

  203. Jia J, Verma S, Nakayama S, Quillinan N, Grafe MR, Hurn PD, et al. Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J Cereb Blood Flow Metab. 2011;31(11):2160–8.

    PubMed  CAS  Google Scholar 

  204. Perraud AL, Takanishi CL, Shen B, Kang S, Smith MK, Schmitz C, et al. Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem. 2005;280(7):6138–48.

    PubMed  CAS  Google Scholar 

  205. Ying W, Alano CC, Garnier P, Swanson RA. NAD+ as a metabolic link between DNA damage and cell death. J Neurosci Res. 2005;79(1–2):216–23.

    PubMed  CAS  Google Scholar 

  206. Zhu K, Swanson RA, Ying W. NADH can enter into astrocytes and block poly(ADP-ribose) polymerase-1-mediated astrocyte death. Neuroreport. 2005;16(11):1209–12.

    PubMed  CAS  Google Scholar 

  207. Wang S, Xing Z, Vosler PS, Yin H, Li W, Zhang F, et al. Cellular NAD replenishment confers marked neuroprotection against ischemic cell death: role of enhanced DNA repair. Stroke. 2008;39(9):2587–95.

    PubMed  CAS  Google Scholar 

  208. Lu H, Burns D, Garnier P, Wei G, Zhu K, Ying W. P2X7 receptors mediate NADH transport across the plasma membranes of astrocytes. Biochem Biophys Res Commun. 2007;362(4):946–50.

    PubMed  CAS  Google Scholar 

  209. Bruzzone S, Guida L, Zocchi E, Franco L, De Flora A. Connexin 43 hemi channels mediate Ca2+-regulated transmembrane NAD+ fluxes in intact cells. FASEB J. 2001;15(1):10–2.

    PubMed  CAS  Google Scholar 

  210. Anderson CM, Bergher JP, Swanson RA. ATP-induced ATP release from astrocytes. J Neurochem. 2004;88(1):246–56.

    PubMed  CAS  Google Scholar 

  211. Suadicani SO, Brosnan CF, Scemes E. P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci. 2006;26(5):1378–85.

    PubMed  CAS  Google Scholar 

  212. Nagasawa K, Escartin C, Swanson RA. Astrocyte cultures exhibit P2X7 receptor channel opening in the absence of exogenous ligands. Glia. 2009;57(6):622–33.

    PubMed  Google Scholar 

  213. Robson SC, Sevigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal. 2006;2(2):409–30.

    PubMed  CAS  Google Scholar 

  214. Wink MR, Braganhol E, Tamajusuku AS, Lenz G, Zerbini LF, Libermann TA, et al. Nucleoside triphosphate diphosphohydrolase-2 (NTPDase2/CD39L1) is the dominant ectonucleotidase expressed by rat astrocytes. Neuroscience. 2006;138(2):421–32.

    PubMed  CAS  Google Scholar 

  215. Nagai K, Nagasawa K, Fujimoto S. Transport mechanisms for adenosine and uridine in primary-cultured rat cortical neurons and astrocytes. Biochem Biophys Res Commun. 2005;334(4):1343–50.

    PubMed  CAS  Google Scholar 

  216. Nagasawa K, Kawasaki F, Tanaka A, Nagai K, Fujimoto S. Characterization of guanine and guanosine transport in primary cultured rat cortical astrocytes and neurons. Glia. 2007;55(14):1397–404.

    PubMed  Google Scholar 

  217. Okuda H, Higashi Y, Nishida K, Fujimoto S, Nagasawa K. Contribution of P2X7 receptors to adenosine uptake by cultured mouse astrocytes. Glia. 2010;58(14):1757–65.

    PubMed  Google Scholar 

  218. Won SJ, Choi BY, Yoo BH, Sohn M, Ying W, Swanson RA, et al. Prevention of traumatic brain injury-induced neuron death by intranasal delivery of nicotinamide adenine dinucleotide. J Neurotrauma. 2012;29(7):1401–9.

    PubMed  Google Scholar 

  219. Magni G, Amici A, Emanuelli M, Raffaelli N, Ruggieri S. Enzymology of NAD+ synthesis. Adv Enzymol Relat Areas Mol Biol. 1999;73:135–82, xi.

    Google Scholar 

  220. Belenky P, Bogan KL, Brenner C. NAD+ metabolism in health and disease. Trends Biochem Sci. 2007;32(1):12–9.

    PubMed  CAS  Google Scholar 

  221. Jacobson EL, Dame AJ, Pyrek JS, Jacobson MK. Evaluating the role of niacin in human carcinogenesis. Biochimie. 1995;77(5):394–8.

    PubMed  CAS  Google Scholar 

  222. Collins PB, Chaykin S. The management of nicotinamide and nicotinic acid in the mouse. J Biol Chem. 1972;247(3):778–83.

    PubMed  CAS  Google Scholar 

  223. Garten A, Petzold S, Korner A, Imai S, Kiess W. Nampt: linking NAD biology, metabolism and cancer. Trends in endocrinology and metabolism. TEM. 2009;20(3):130–8.

    PubMed  CAS  Google Scholar 

  224. Tatibana M, Kita K, Taira M, Ishijima S, Sonoda T, Ishizuka T, et al. Mammalian phosphoribosyl-pyrophosphate synthetase. Adv Enzym Regul. 1995;35:229–49.

    CAS  Google Scholar 

  225. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307(5708):426–30.

    PubMed  CAS  Google Scholar 

  226. Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004;279(49):50754–63.

    PubMed  CAS  Google Scholar 

  227. Sasaki Y, Araki T, Milbrandt J. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J Neurosci. 2006;26(33):8484–91.

    PubMed  CAS  Google Scholar 

  228. Kitani T, Okuno S, Fujisawa H. Growth phase-dependent changes in the subcellular localization of pre-B-cell colony-enhancing factor. FEBS Lett. 2003;544(1–3):74–8.

    PubMed  CAS  Google Scholar 

  229. Zhang W, Xie Y, Wang T, Bi J, Li H, Zhang LQ, et al. Neuronal protective role of PBEF in a mouse model of cerebral ischemia. J Cereb Blood Flow Metab. 2010;30(12):1962–71.

    PubMed  CAS  Google Scholar 

  230. Wang P, Xu TY, Guan YF, Tian WW, Viollet B, Rui YC, et al. Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway. Ann Neurol. 2011;69(2):360–74.

    PubMed  CAS  Google Scholar 

  231. Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy. 2012;8(1):77–87.

    PubMed  CAS  Google Scholar 

  232. Manwani B, McCullough LD. Function of the master energy regulator adenosine monophosphate-activated protein kinase in stroke. J Neurosci Res. 2013;91:1018–29.

    Google Scholar 

  233. Coleman MP, Freeman MR. Wallerian degeneration, wld(s), and nmnat. Annu Rev Neurosci. 2010;33:245–67.

    PubMed  CAS  Google Scholar 

  234. Raffaelli N, Sorci L, Amici A, Emanuelli M, Mazzola F, Magni G. Identification of a novel human nicotinamide mononucleotide adenylyltransferase. Biochem Biophys Res Commun. 2002;297(4):835–40.

    PubMed  CAS  Google Scholar 

  235. Emanuelli M, Carnevali F, Saccucci F, Pierella F, Amici A, Raffaelli N, et al. Molecular cloning, chromosomal localization, tissue mRNA levels, bacterial expression, and enzymatic properties of human NMN adenylyltransferase. J Biol Chem. 2001;276(1):406–12.

    PubMed  CAS  Google Scholar 

  236. Zhang X, Kurnasov OV, Karthikeyan S, Grishin NV, Osterman AL, Zhang H. Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis. J Biol Chem. 2003;278(15):13503–11.

    PubMed  CAS  Google Scholar 

  237. Berger F, Lau C, Dahlmann M, Ziegler M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J Biol Chem. 2005;280(43):36334–41.

    PubMed  CAS  Google Scholar 

  238. Yahata N, Yuasa S, Araki T. Nicotinamide mononucleotide adenylyltransferase expression in mitochondrial matrix delays Wallerian degeneration. J Neurosci. 2009;29(19):6276–84.

    PubMed  CAS  Google Scholar 

  239. Babetto E, Beirowski B, Russler EV, Milbrandt J, Diantonio A. The phr1 ubiquitin ligase promotes injury-induced axon self-destruction. Cell reports. 2013;3(5):1422–9.

    PubMed  CAS  Google Scholar 

  240. Ljungberg MC, Ali YO, Zhu J, Wu CS, Oka K, Zhai RG, et al. CREB-activity and nmnat2 transcription are down-regulated prior to neurodegeneration, while NMNAT2 over-expression is neuroprotective, in a mouse model of human tauopathy. Hum Mol Genet. 2012;21(2):251–67.

    PubMed  CAS  Google Scholar 

  241. Zhai RG, Zhang F, Hiesinger PR, Cao Y, Haueter CM, Bellen HJ. NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature. 2008;452(7189):887–91.

    PubMed  CAS  Google Scholar 

  242. Jayaram HN, Kusumanchi P, Yalowitz JA. NMNAT expression and its relation to NAD metabolism. Curr Med Chem. 2011;18(13):1962–72.

    PubMed  CAS  Google Scholar 

  243. Lai Y, Chen Y, Watkins SC, Nathaniel PD, Guo F, Kochanek PM, et al. Identification of poly-ADP-ribosylated mitochondrial proteins after traumatic brain injury. J Neurochem. 2008;104(6):1700–11.

    PubMed  CAS  Google Scholar 

  244. Meyer RG, Meyer-Ficca ML, Jacobson EL, Jacobson MK. Human poly(ADP-ribose) glycohydrolase (PARG) gene and the common promoter sequence it shares with inner mitochondrial membrane translocase 23 (TIM23). Gene. 2003;314:181–90.

    PubMed  CAS  Google Scholar 

  245. Meyer-Ficca ML, Meyer RG, Coyle DL, Jacobson EL, Jacobson MK. Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments. Exp Cell Res. 2004;297(2):521–32.

    PubMed  CAS  Google Scholar 

  246. Whatcott CJ, Meyer-Ficca ML, Meyer RG, Jacobson MK. A specific isoform of poly(ADP-ribose) glycohydrolase is targeted to the mitochondrial matrix by a N-terminal mitochondrial targeting sequence. Exp Cell Res. 2009;315(20):3477–85.

    PubMed  CAS  Google Scholar 

  247. Oka S, Kato J, Moss J. Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J Biol Chem. 2006;281(2):705–13.

    PubMed  CAS  Google Scholar 

  248. Ono T, Kasamatsu A, Oka S, Moss J. The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases. Proc Natl Acad Sci U S A. 2006;103(45):16687–91.

    PubMed  CAS  Google Scholar 

  249. Mueller-Dieckmann C, Kernstock S, Lisurek M, von Kries JP, Haag F, Weiss MS, et al. The structure of human ADP-ribosylhydrolase 3 (ARH3) provides insights into the reversibility of protein ADP-ribosylation. Proc Natl Acad Sci U S A. 2006;103(41):15026–31.

    PubMed  CAS  Google Scholar 

  250. Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell. 2009;137(3):560–70.

    PubMed  CAS  Google Scholar 

  251. Stein LR, Imai S. The dynamic regulation of NAD metabolism in mitochondria. Trends in endocrinology and metabolism. TEM. 2012;23(9):420–8.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by US Veterans Affairs Merit Grant BX000917 to TK.

Conflict of Interest

Katrina Owens, Ji H. Park, Rosemary Schuh, and Tibor Kristian declare that they have no conflicts of interest. This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Kristian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owens, K., Park, J.H., Schuh, R. et al. Mitochondrial Dysfunction and NAD+ Metabolism Alterations in the Pathophysiology of Acute Brain Injury. Transl. Stroke Res. 4, 618–634 (2013). https://doi.org/10.1007/s12975-013-0278-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-013-0278-x

Keywords

Navigation