Translational Stroke Research

, Volume 4, Issue 3, pp 297–307 | Cite as

Distal Occlusion of the Middle Cerebral Artery in Mice: Are We Ready to Assess Long-Term Functional Outcome?

  • Anna RosellEmail author
  • Véronique Agin
  • Mahbubur Rahman
  • Anna Morancho
  • Carine Ali
  • Jari Koistinaho
  • Xiaoying Wang
  • Denis Vivien
  • Markus Schwaninger
  • Joan Montaner
Original Article


Rodent animal models of stroke are widely used with brain ischemia inducible by various occlusion methods. Permanent or transient occlusion of the distal portion of the middle cerebral artery (MCAO) offers a reproducible model with low mortality rates, and it is the most likely model of choice for mid- and long-term studies to assess neurorepair or long-term effects of neuroprotective drugs. Therefore, a measurable and stable neurological assessment would be required to evaluate sensorimotor and cognitive deficits at short and long terms as suggested by the Stroke Therapy Academic Industry Roundtable preclinical recommendations. We review the usefulness of different tests used to measure functional outcome after distal MCAO in mice and further sustain these data with our own multilaboratories’ experience. Results show that several tests were suitable to detect neurological deterioration at short term. Grip strength and latency to move have shown some usefulness at long term, with important differences between strains, while less clear are the data for the corner test. Important strain differences in terms of infarct volume are also reported in this study. Statistical power analysis and sample size calculation of our data confirmed the value of grip strength and latency to move tests but suggest that larger sample size would be required. In conclusion, there are no robust data supporting the use of a specific behavior test to assess long-term functional outcome after distal MCAO in mice. This is an important limitation since translational basic research should provide data to help further clinical trial evaluation. New multicenter studies with larger sample size and specific mouse strains are needed to confirm the validity of tests, such as the corner, latency to move or grip strength.


Ischemia Mouse Distal MCAO Functional outcome 



A.R. is supported by the Miguel Servet program (CP09/00265) from the Spanish Ministry of Health (Instituto de Salud Carlos III). V.A., C.A. and D.V. works are supported by INSERM, French Ministry of Research and Technology, and Regional Council of Lower Normandy. The research leading to these results has received funding from the European Union’s Seventh Framework Program (FP7/2007-2013) under grant agreements No. 201024 and 202213 (European Stroke Network), the Spanish Ministry of Health (Instituto de Salud Carlos III, grant agreement No. PI10/00694, and RETICS program, RENEVAS network), and the ERANET-NEURON program from the Ministerio de Economía y Competitividad (grant agreement No. 2011-1352).

Conflict of Interest

The authors declare no conflict of interest.


  1. 1.
    Molina CA. Reperfusion therapies for acute ischemic stroke: current pharmacological and mechanical approaches. Stroke. 2011;42:S16–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Howells DW, Porritt MJ, Rewell SS, O’Collins V, Sena ES, van der Worp HB, Traystman RJ, Macleod MR. Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia. J Cereb Blood Flow Metab. 2010;30:1412–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Lo EH. Experimental models, neurovascular mechanisms and translational issues in stroke research. Br J Pharmacol. 2008;153:S396–405.PubMedCrossRefGoogle Scholar
  4. 4.
    Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, Lo EH. STAIR Group. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 2009;40:2244–50.PubMedCrossRefGoogle Scholar
  5. 5.
    DeVries AC, Nelson RJ, Traystman RJ, Hurn PD. Cognitive and behavioral assessment in experimental stroke research: will it prove useful? Neurosci Biobehav Rev. 2001;25:325–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Schallert T. Behavioral tests for preclinical intervention assessment. NeuroRx. 2006;3:497–504.PubMedCrossRefGoogle Scholar
  7. 7.
    Zarruk JG, Garcia-Yebenes I, Romera VG, Ballesteros I, Moraga A, Cuartero MI, Hurtado O, Sobrado M, Pradillo JM, Fernandez-Lopez D, Serena J, Castillo-Melendez M, Moro MA, Lizasoain I. Neurological tests for functional outcome assessment in rodent models of ischaemic stroke. Rev Neurol. 2011;53:607–18.PubMedGoogle Scholar
  8. 8.
    García-Bonilla L, Rosell A, Torregrosa G, Salom JB, Alborch E, Gutiérrez M, Díez-Tejedor E, Martínez-Murillo R, Agulla J, Ramos-Cabrer P, Castillo J, Gasull T, Montaner J. Recommendations guide for experimental animal models in stroke research. Neurologia. 2011;26:105–10.PubMedCrossRefGoogle Scholar
  9. 9.
    Brooks SP, Dunnett SB. Tests to assess motor phenotype in mice: a user’s guide. Nat Rev Neurosci. 2009;10:519–29.PubMedCrossRefGoogle Scholar
  10. 10.
    Morancho A, García-Bonilla L, Barceló V, Giralt D, Campos-Martorell M, Garcia S, Montaner J, Rosell A. A new method for focal transient cerebral ischemia by distal compression of the middle cerebral artery. Neuropathol Appl Neurobiol. 2012; (in press)Google Scholar
  11. 11.
    Orset C, Macrez R, Young AR, Panthou D, Angles-Cano E, Maubert E, Agin V, Vivien D. Mouse model of in situ thromboembolic stroke and reperfusion. Stroke. 2007;38:2771–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Lubjuhn J, Gastens A, von Wilpert G, Bargiotas P, Herrmann O, Murikinati S, Rabie T, Marti HH, Amende I, Hampton TG, Schwaninger M. Functional testing in a mouse stroke model induced by occlusion of the distal middle cerebral artery. J Neurosci Methods. 2009;184:95–103.PubMedCrossRefGoogle Scholar
  13. 13.
    STAIR. Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke. 1999;12:2752–8.Google Scholar
  14. 14.
    Shelton SB, Pettigrew B, Hermann AD, Zhou W, Sullivan PM, Crutcher KA, Strauss KI. A simple, efficient tool for assessment of mice after unilateral cortex injury. J Neurosci Methods. 2008;168:431–42.PubMedCrossRefGoogle Scholar
  15. 15.
    Bouët V, Freret T, Toutain J, Divoux D, Boulouard M, Schumann-Bard P. Sensorimotor and cognitive deficits after transient middle cerebral artery occlusion in the mouse. Exp Neurol. 2007;203:555–67.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang L, Chen J, Li Y, Zhang ZG, Chopp M. Quantitative measurement of motor and somatosensory impairments mild (30 min) and severe (2 h) transient middle cerebral artery occlusion in rats. J Neurol Sci. 2000;74:141–6.CrossRefGoogle Scholar
  17. 17.
    Kasner SE. Clinical interpretation and use of stroke scales. Lancet Neurol. 2006;5:603–12.PubMedCrossRefGoogle Scholar
  18. 18.
    Guluma KZ, Lapchak PA. Comparison of the post-embolization effects of tissue-plasminogen activator and simvastatin on neurological outcome in a clinically relevant rat model of acute ischemic stroke. Brain Res. 2010;1354:206–16.PubMedCrossRefGoogle Scholar
  19. 19.
    Morris DC, Chopp M, Zhang L, Lu M, Zhang ZG. Thymosin beta4 improves functional neurological outcome in a rat model of embolic stroke. Neuroscience. 2010;169:674–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Schäbitz WR, Sommer C, Zoder W, Kiessling M, Schwaninger M, Schwab S. Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. Stroke. 2000;31:2212–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Gutiérrez-Fernández M, Rodríguez-Frutos B, Alvarez-Grech J, Vallejo-Cremades MT, Expósito-Alcaide M, Merino J, Roda JM, Díez-Tejedor E. Functional recovery after hematic administration of allogenic mesenchymal stem cells in acute ischemic stroke in rats. Neuroscience. 2011;175:394–405.PubMedCrossRefGoogle Scholar
  22. 22.
    McGill JK, Gallagher L, Carswell HV, Irving EA, Dominiczak AF, Macrae IM. Impaired functional recovery after stroke in the stroke-prone spontaneously hypertensive rat. Stroke. 2005;36:135–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Hayakawa K, Pham LD, Katusic ZS, Arai K, Lo EH. Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery. Proc Natl Acad Sci USA. 2012;109:7505–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Chen J, Zacharek A, Zhang C, Jiang H, Li Y, Roberts C, Lu M, Kapke A, Chopp M. Endothelial nitric oxide synthase regulates brain-derived neurotrophic factor expression and neurogenesis after stroke in mice. J Neurosci. 2005;25:2366–75.PubMedCrossRefGoogle Scholar
  25. 25.
    Guo Q, Wang G, Liu X, Namura S. Effects of gemfibrozil on outcome after permanent middle cerebral artery occlusion in mice. Brain Res. 2009;1279:121–30.PubMedCrossRefGoogle Scholar
  26. 26.
    García-Yébenes I, Sobrado M, Zarruk JG, Castellanos M, Pérez de la Ossa N, Dávalos A, Serena J, Lizasoain I, Moro MA. A mouse model of hemorrhagic transformation by delayed tissue plasminogen activator administration after in situ thromboembolic stroke. Stroke. 2011;42:196–203.PubMedCrossRefGoogle Scholar
  27. 27.
    Gerlai R, Thibodeaux H, Palmer JT, van Lookeren Campagne M, Van Bruggen N. Transient focal cerebral ischemia induces sensorimotor deficits in mice. Behav Brain Res. 2000;108:63–71.PubMedCrossRefGoogle Scholar
  28. 28.
    Freret T, Bouet V, Leconte C, Roussel S, Chazalviel L, Divoux D, Schumann-Bard P, Boulouard M. Behavioral deficits after distal focal cerebral ischemia in mice: usefulness of adhesive removal test. Behav Neurosci. 2009;123:224–30.PubMedCrossRefGoogle Scholar
  29. 29.
    Ruscher K, Erickson A, Kuric E, Inácio AR, Wieloch T. Effects of chronic Clozapine administration on apolipoprotein D levels and on functional recovery following experimental stroke. Brain Res. 2010;1321:152–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Ferrara A, El Bejaoui S, Seyen S, Tirelli E, Plumier JC. The usefulness of operant conditioning procedures to assess long-lasting deficits following transient focal ischemia in mice. Behav Brain Res. 2009;28(205):525–34.CrossRefGoogle Scholar
  31. 31.
    Hattori K, Lee H, Hurn PD, Crain BJ, Traystman RJ, DeVries AC. Cognitive deficits after focal cerebral ischemia in mice. Stroke. 2000;31:1939–44.PubMedCrossRefGoogle Scholar
  32. 32.
    Craft TK, Glasper ER, McCullough L, Zhang N, Sugo N, Otsuka T, Hurn PD, DeVries AC. Social interaction improves experimental stroke outcome. Stroke. 2005;36:2006–11.PubMedCrossRefGoogle Scholar
  33. 33.
    Liesz A, Sun L, Zhou W, Schwarting S, Mracsko E, Zorn M, Bauer H, Sommer C, Veltkamp R. FTY720 reduces post-ischemic brain lymphocyte influx but does not improve outcome in permanent murine cerebral ischemia. PLoS One. 2011;6:e21312.PubMedCrossRefGoogle Scholar
  34. 34.
    Wang X, Mao X, Xie L, Sun F, Greenberg DA, Jin K. Conditional depletion of neurogenesis inhibits long-term recovery after experimental stroke in mice. PLoS One. 2012;7:e38932.PubMedCrossRefGoogle Scholar
  35. 35.
    Tennant KA, Jones TA. Sensorimotor behavioral effects of endothelin-1 induced small cortical infarcts in C57BL/6 mice. J Neurosci Methods. 2009;181:18–26.PubMedCrossRefGoogle Scholar
  36. 36.
    Liauw J, Hoang S, Choi M, Eroglu C, Choi M, Sun GH, Percy M, Wildman-Tobriner B, Bliss T, Guzman RG, Barres BA, Steinberg GK. Thrombospondins 1 and 2 are necessary for synaptic plasticity and functional recovery after stroke. J Cereb Blood Flow Metab. 2008;28:1722–32.PubMedCrossRefGoogle Scholar
  37. 37.
    Macrez R, Obiang P, Gauberti M, Roussel B, Baron A, Parcq J, Cassé F, Hommet Y, Orset C, Agin V, Bezin L, Berrocoso TG, Petersen KU, Montaner J, Maubert E, Vivien D, Ali C. Antibodies preventing the interaction of tissue-type plasminogen activator with N-methyl-d-aspartate receptors reduce stroke damages and extend the therapeutic window of thrombolysis. Stroke. 2011;42:2315–22.PubMedCrossRefGoogle Scholar
  38. 38.
    Guégan C, Braudeau J, Couriaud C, Dietz GP, Lacombe P, Bähr M, Nosten-Bertrand M, Onténiente B. PTD-XIAP protects against cerebral ischemia by anti-apoptotic and transcriptional regulatory mechanisms. Neurobiol Dis. 2006;22:177–86.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang H, Prabhakar P, Sealock R, Faber JE. Wide genetic variation in the native pial collateral circulation is a major determinant of variation in severity of stroke. J Cereb Blood Flow Metab. 2010;30:923–34.PubMedCrossRefGoogle Scholar
  40. 40.
    Majid A, He YY, Gidday JM, Kaplan SS, Gonzales ER, Park TS, Fenstermacher JD, Wei L, Choi DW, Hsu CY. Differences in vulnerability to permanent focal cerebral ischemia among 3 common mouse strains. Stroke. 2000;31:2707–14.PubMedCrossRefGoogle Scholar
  41. 41.
    Koistinaho M, Malm TM, Kettunen MI, Goldsteins G, Starckx S, Kauppinen RA, Opdenakker G, Koistinaho J. Minocycline protects against permanent cerebral ischemia in wild type but not in matrix metalloprotease-9-deficient mice. J Cereb Blood Flow Metab. 2005;25:460–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Anna Rosell
    • 1
    Email author
  • Véronique Agin
    • 2
  • Mahbubur Rahman
    • 3
  • Anna Morancho
    • 1
  • Carine Ali
    • 2
  • Jari Koistinaho
    • 4
  • Xiaoying Wang
    • 5
  • Denis Vivien
    • 2
  • Markus Schwaninger
    • 3
  • Joan Montaner
    • 1
  1. 1.Neurovascular Research Laboratory and Neurology Department, Vall d’Hebron Research InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Serine Proteases and Pathophysiology of the Neurovascular Unit, GIP CYCERONINSERM UMR-S U919, University Caen Basse-NormandieCaenFrance
  3. 3.Institute of Experimental and Clinical Pharmacology and ToxicologyUniversity of LübeckLübeckGermany
  4. 4.Department of Neurobiology, AI Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
  5. 5.Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience ProgramHarvard Medical SchoolBostonUSA

Personalised recommendations