Skip to main content

Introduction of a Rabbit Carotid Artery Model for Sonothrombolysis Research

Abstract

The goal of this study was to develop an in vivo sonothrombolysis model for stroke research. The rabbit carotid artery has average vessel diameters similar to human M1/M2 segments and allows generation of a thrombotic occlusion using various kinds of thrombus material as well as thrombus placement under visual control. It further allows real-time monitoring of flow and clot mechanics during the sonothrombolysis procedure using high-frequency diagnostic ultrasound. In the present study, the model will be introduced and first results to show feasibility using diagnostic as well as high-intensity focused ultrasound will be presented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alexandrov AV, Mikulik R, Ribo M, et al. A pilot randomized clinical safety study of sonothrombolysis augmentation with ultrasound-activated perflutren-lipid microspheres for acute ischemic stroke. Stroke. 2008;39(5):1464–9.

    PubMed  Article  CAS  Google Scholar 

  2. Alexandrov AV, Molina CA, Grotta JC, et al. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med. 2004;351(21):2170–8.

    PubMed  Article  CAS  Google Scholar 

  3. Molina CA, Barreto AD, Tsivgoulis G, et al. Transcranial ultrasound in clinical sonothrombolysis (TUCSON) trial. Ann Neurol. 2009;66(1):28–38.

    PubMed  Article  CAS  Google Scholar 

  4. Eggers J, Konig IR, Koch B, Handler G, Seidel G. Sonothrombolysis with transcranial color-coded sonography and recombinant tissue-type plasminogen activator in acute middle cerebral artery main stem occlusion: results from a randomized study. Stroke. 2008;39(5):1470–5.

    PubMed  Article  CAS  Google Scholar 

  5. Eggers J, Seidel G, Koch B, Konig IR. Sonothrombolysis in acute ischemic stroke for patients ineligible for rt-PA. Neurol. 2005;64(6):1052–4.

    Article  Google Scholar 

  6. Braaten JV, Goss RA, Francis CW. Ultrasound reversibly disaggregates fibrin fibers. Thromb Haemost. 1997;78(3):1063–8.

    PubMed  CAS  Google Scholar 

  7. Devcic-Kuhar B, Pfaffenberger S, Gherardini L, et al. Ultrasound affects distribution of plasminogen and tissue-type plasminogen activator in whole blood clots in vitro. Thromb Haemost. 2004;92(5):980–5.

    PubMed  CAS  Google Scholar 

  8. Pfaffenberger S, Devcic-Kuhar B, El-Rabadi K, et al. 2 MHz ultrasound enhances t-PA-mediated thrombolysis: comparison of continuous versus pulsed ultrasound and standing versus travelling acoustic waves. Thromb Haemost. 2003;89(3):583–9.

    PubMed  CAS  Google Scholar 

  9. Datta S, Coussios CC, Ammi AY, Mast TD, de Courten-Myers GM, Holland CK. Ultrasound-enhanced thrombolysis using Definity((R)) as a cavitation nucleation agent. Ultrasound Med Biol. 2008;34(9):1421–33.

    PubMed  Article  Google Scholar 

  10. Schafer S, Kliner S, Klinghammer L, et al. Influence of ultrasound operating parameters on ultrasound-induced thrombolysis in vitro. Ultrasound Med Biol. 2005;31(6):841–7.

    PubMed  Article  Google Scholar 

  11. Datta S, Coussios CC, McAdory LE, et al. Correlation of cavitation with ultrasound enhancement of thrombolysis. Ultrasound Med Biol. 2006;32(8):1257–67.

    PubMed  Article  Google Scholar 

  12. Behrens S, Daffertshofer M, Spiegel D, Hennerici M. Low-frequency, low-intensity ultrasound accelerates thrombolysis through the skull. Ultrasound Med Biol. 1999;25(2):269–73.

    PubMed  Article  CAS  Google Scholar 

  13. Holscher T, Raman R, Ernstrom K, et al. In vitro sonothrombolysis with duplex ultrasound: first results using a simplified model. Cerebrovasc Dis. 2009;28(4):365–70.

    PubMed  Article  Google Scholar 

  14. Alonso A, Dempfle CE, Della Martina A, et al. In vivo clot lysis of human thrombus with intravenous abciximab immunobubbles and ultrasound. Thromb Res. 2009;124(1):70–4.

    PubMed  Article  CAS  Google Scholar 

  15. Dijkmans PA, Juffermans LJ, Musters RJ, et al. Microbubbles and ultrasound: from diagnosis to therapy. Eur J Echocardiogr. 2004;5(4):245–56.

    PubMed  Article  CAS  Google Scholar 

  16. Daffertshofer M, Gass A, Ringleb P, et al. Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia: increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator: results of a phase II clinical trial. Stroke. 2005;36(7):1441–6.

    PubMed  Article  Google Scholar 

  17. Siegel RJ, Atar S, Fishbein MC, et al. Noninvasive transcutaneous low frequency ultrasound enhances thrombolysis in peripheral and coronary arteries. Echocardiogr. 2001;18(3):247–57.

    Article  CAS  Google Scholar 

  18. Frenkel V, Oberoi J, Stone MJ, et al. Pulsed high-intensity focused ultrasound enhances thrombolysis in an in vitro model. Radiol. 2006;239(1):86–93.

    Article  Google Scholar 

  19. Rosenschein U, Furman V, Kerner E, Fabian I, Bernheim J, Eshel Y. Ultrasound imaging-guided noninvasive ultrasound thrombolysis: preclinical results. Circ. 2000;102(2):238–45.

    Article  CAS  Google Scholar 

  20. Daffertshofer M, Huang Z, Fatar M, et al. Efficacy of sonothrombolysis in a rat model of embolic ischemic stroke. Neurosci Lett. 2004;361(1–3):115–9.

    PubMed  Article  CAS  Google Scholar 

  21. Saguchi T, Onoue H, Urashima M, Ishibashi T, Abe T, Furuhata H. Effective and safe conditions of low-frequency transcranial ultrasonic thrombolysis for acute ischemic stroke: neurologic and histologic evaluation in a rat middle cerebral artery stroke model. Stroke. 2008;39(3):1007–11.

    PubMed  Article  Google Scholar 

  22. Culp WC, Flores R, Brown AT, et al. Successful microbubble sonothrombolysis without tissue-type plasminogen activator in a rabbit model of acute ischemic stroke. Stroke. 2011;42(8):2280–5.

    PubMed  Article  Google Scholar 

  23. Flores R, Hennings LJ, Lowery JD, Brown AT, Culp WC. Microbubble-augmented ultrasound sonothrombolysis decreases intracranial hemorrhage in a rabbit model of acute ischemic stroke. Invest Radiol. 2011;46(7):419–24.

    PubMed  Article  CAS  Google Scholar 

  24. Culp WC, Erdem E, Roberson PK, Husain MM. Microbubble potentiated ultrasound as a method of stroke therapy in a pig model: preliminary findings. J Vasc Interv Radiol. 2003;14(11):1433–6.

    PubMed  Article  Google Scholar 

  25. Marder VJ, Chute DJ, Starkman S, et al. Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke. Stroke. 2006;37(8):2086–93.

    PubMed  Article  Google Scholar 

  26. Rasmussen LE, Vanhoutte PM, Jensen BL, Skott O. Continuous flow augments reactivity of rabbit carotid artery by reducing bioavailability of NO despite an increase in release of EDHF. Am J Physiol Heart Circ Physiol. 2006;291(4):H1521–8.

    PubMed  Article  CAS  Google Scholar 

  27. Serrador JM, Picot PA, Rutt BK, Shoemaker JK, Bondar RL. MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke. 2000;31(7):1672–8.

    PubMed  Article  CAS  Google Scholar 

  28. Holscher T, Wilkening WG, Molkenstruck S, Voit H, Koch C. Transcranial sound field characterization. Ultrasound Med Biol. 2008;34(6):973–80.

    PubMed  Article  Google Scholar 

  29. Hoelscher T FD, Raman R, Ernstrom K, Zadicario E, Bradley WG, Voie A. Noninvasive transcranial clot lysis using high intensity focused ultrasound. Journal of Neurology and Neurophysiology 2011;S1-002.

  30. Poliachik SL, Chandler WL, Mourad PD, et al. Effect of high-intensity focused ultrasound on whole blood with and without microbubble contrast agent. Ultrasound Med Biol. 1999;25(6):991–8.

    PubMed  Article  CAS  Google Scholar 

  31. Abramowicz JS, Miller MW, Battaglia LF, Mazza S. Comparative hemolytic effectiveness of 1 MHz ultrasound on human and rabbit blood in vitro. Ultrasound Med Biol. 2003;29(6):867–73.

    PubMed  Article  Google Scholar 

  32. Williams AR, Chater BV, Allen KA, Sherwood MR, Sanderson JH. Release of beta-thromboglobulin from human platelets by therapeutic intensities of ultrasound. Br J Haematol. 1978;40(1):133–42.

    PubMed  Article  CAS  Google Scholar 

  33. Kornowski R, Meltzer RS, Chernine A, Vered Z, Battler A. Does external ultrasound accelerate thrombolysis? Results from a rabbit model. Circ. 1994;89(1):339–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Institute of Health (R01HL091043-01A2) and InSightec, Inc., Tirat Carmel, Israel. We would like to thank very much Cheryl Schendel and Daniel Lotz who contributed significantly to the development of the model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilo Hölscher.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hölscher, T., Fisher, D.J., Ahadi, G. et al. Introduction of a Rabbit Carotid Artery Model for Sonothrombolysis Research. Transl. Stroke Res. 3, 397–407 (2012). https://doi.org/10.1007/s12975-012-0194-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0194-5

Keywords

  • Transcranial
  • Rabbit
  • Carotid artery
  • High-intensity focused ultrasound
  • Sonothrombolysis
  • Stroke