Skip to main content

Advertisement

Log in

Oxygen Metabolism in Ischemic Stroke Using Magnetic Resonance Imaging

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Detecting “at-risk” but potentially salvageable brain tissue, known as the ischemic penumbra, is of importance for identifying patients who may benefit from thrombolytic or other treatments beyond the currently FDA-approved short therapeutic window for tissue plasminogen activator. Since the magnetic resonance blood oxygenation level-dependent (BOLD) contrast may provide information concerning tissue oxygen metabolism, its utilization in ischemic stroke has been explored. The focus of this review is to provide an introduction of several BOLD-based methods, including susceptibility-weighted imaging, R2 BOLD, R2*, R2′, MR_OEF, and MR_OMI approaches to assess cerebral oxygenation changes induced by ischemia. Specifically, we will review the underlying pathophysiological basis of the imaging approaches, followed by a brief introduction of BOLD contrast, and finally the applications of BOLD approaches in ischemic stroke. The advantages and disadvantages of each method are addressed. In summary, the BOLD-based methods are promising for imaging oxygenation in ischemic tissue. Future steps would include technical refinement and vigorous validation against another independent method, such as positron emission tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grotta JC. Emerging stroke therapies. Semin Neurol. 1986;6(3):285–92.

    Article  PubMed  CAS  Google Scholar 

  2. Heiss WD, Graf R, Wienhard K, Lottgen J, Saito R, Fujita T, et al. Dynamic penumbra demonstrated by sequential multitracer PET after middle cerebral artery occlusion in cats. J Cereb Blood Flow Metab. 1994;14(6):892–902.

    Article  PubMed  CAS  Google Scholar 

  3. Tas E, Saano A, Leinonen P, Lindstrom K. Identification of Rhizobium spp. in peat-based inoculants by DNA hybridization and PCR and its application in inoculant quality control. Appl Environ Microbiol. 1995;61(5):1822–7.

    PubMed  CAS  Google Scholar 

  4. The NINDS rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333(24):1581–7.

    Article  Google Scholar 

  5. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29. doi:10.1056/NEJMoa0804656.

    Article  PubMed  CAS  Google Scholar 

  6. Donnan GA, Howells DW, Markus R, Toni D, Davis SM. Can the time window for administration of thrombolytics in stroke be increased? CNS Drugs. 2003;17(14):995–1011.

    Article  PubMed  CAS  Google Scholar 

  7. Fisher M, Takano K. The penumbra, therapeutic time window and acute ischaemic stroke. Baillieres Clin Neurol. 1995;4(2):279–95.

    PubMed  CAS  Google Scholar 

  8. Heiss WD, Huber M, Fink GR, Herholz K, Pietrzyk U, Wagner R, et al. Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab. 1992;12(2):193–203.

    Article  PubMed  CAS  Google Scholar 

  9. Read SJ, Hirano T, Abbott DF, Markus R, Sachinidis JI, Tochon-Danguy HJ, et al. The fate of hypoxic tissue on 18 F-fluoromisonidazole positron emission tomography after ischemic stroke. Ann Neurol. 2000;48(2):228–35.

    Article  PubMed  CAS  Google Scholar 

  10. Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol. 2006;60(5):508–17.

    Article  PubMed  Google Scholar 

  11. Davis SM, Donnan GA. Advances in penumbra imaging with MR. Cerebrovasc Dis. 2004;17 Suppl 3:23–7.

    Article  PubMed  Google Scholar 

  12. Davis SM, Donnan GA, Parsons MW, Levi C, Butcher KS, Peeters A, et al. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol. 2008;7(4):299–309. doi:10.1016/S1474-4422(08)70044-9.

    Article  PubMed  Google Scholar 

  13. Lansberg MG, Lee J, Christensen S, Straka M, De Silva DA, Mlynash M, et al. RAPID automated patient selection for reperfusion therapy: a pooled analysis of the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET) and the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) Study. Stroke; j cereb circ. 2011;42(6):1608–14. doi:10.1161/STROKEAHA.110.609008.

    Article  Google Scholar 

  14. Shen Q, Meng X, Fisher M, Sotak CH, Duong TQ. Pixel-by-pixel spatiotemporal progression of focal ischemia derived using quantitative perfusion and diffusion imaging. J Cereb Blood Flow Metab. 2003;23(12):1479–88.

    Article  PubMed  Google Scholar 

  15. Kidwell CS, Alger JR, Saver JL. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke. 2003;34(11):2729–35.

    Article  PubMed  Google Scholar 

  16. Li F, Liu KF, Silva MD, Omae T, Sotak CH, Fenstermacher JD, et al. Transient and permanent resolution of ischemic lesions on diffusion-weighted imaging after brief periods of focal ischemia in rats: correlation with histopathology. Stroke. 2000;31(4):946–54.

    Article  PubMed  CAS  Google Scholar 

  17. Li F, Silva MD, Liu KF, Helmer KG, Omae T, Fenstermacher JD, et al. Secondary decline in apparent diffusion coefficient and neurological outcomes after a short period of focal brain ischemia in rats. Ann Neurol. 2000;48(2):236–44.

    Article  PubMed  CAS  Google Scholar 

  18. Li F, Silva MD, Sotak CH, Fisher M. Temporal evolution of ischemic injury evaluated with diffusion-, perfusion-, and T2-weighted MRI. Neurology. 2000;54(3):689–96.

    PubMed  CAS  Google Scholar 

  19. Kidwell CS, Alger JR, Di Salle F, Starkman S, Villablanca P, Bentson J, et al. Diffusion MRI in patients with transient ischemic attacks. [see comments]. Stroke. 1999;30(6):1174–80.

    Article  PubMed  CAS  Google Scholar 

  20. Kidwell CS, Saver JL, Mattiello J, Starkman S, Vinuela F, Duckwiler G, et al. Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol. 2000;47(4):462–9.

    Article  PubMed  CAS  Google Scholar 

  21. Heiss WD, Sobesky J. Comparison of PET and DW/PW-MRI in acute ischemic stroke. Keio J Med. 2008;57(3):125–31.

    Article  PubMed  Google Scholar 

  22. Sobesky J, Zaro Weber O, Lehnhardt FG, Hesselmann V, Neveling M, Jacobs A, et al. Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke. 2005;36(5):980–5.

    Article  PubMed  Google Scholar 

  23. Powers WJ, Grubb Jr RL, Darriet D, Raichle ME. Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans. J Cereb Blood Flow Metab. 1985;5(4):600–8.

    Article  PubMed  CAS  Google Scholar 

  24. Frykholm P, Andersson JL, Valtysson J, Silander HC, Hillered L, Persson L, et al. A metabolic threshold of irreversible ischemia demonstrated by PET in a middle cerebral artery occlusion–reperfusion primate model. Acta Neurol Scand. 2000;102(1):18–26.

    Article  PubMed  CAS  Google Scholar 

  25. Young AR, Sette G, Touzani O, Rioux P, Derlon JM, MacKenzie ET, et al. Relationships between high oxygen extraction fraction in the acute stage and final infarction in reversible middle cerebral artery occlusion: an investigation in anesthetized baboons with positron emission tomography. J Cereb Blood Flow Metab. 1996;16(6):1176–88.

    Article  PubMed  CAS  Google Scholar 

  26. Giffard C, Young AR, Kerrouche N, Derlon JM, Baron JC. Outcome of acutely ischemic brain tissue in prolonged middle cerebral artery occlusion: a serial positron emission tomography investigation in the baboon. J Cereb Blood Flow Metab. 2004;24(5):495–508.

    Article  PubMed  Google Scholar 

  27. Astrup J, Symon L, Branston NM, Lassen NA. Cortical evoked potential and extracellular K + and H + at critical levels of brain ischemia. Stroke; j cereb circ. 1977;8(1):51–7.

    Article  CAS  Google Scholar 

  28. Sobesky J, Zaro Weber O, Lehnhardt FG, Hesselmann V, Thiel A, Dohmen C, et al. Which time-to-peak threshold best identifies penumbral flow? A comparison of perfusion-weighted magnetic resonance imaging and positron emission tomography in acute ischemic stroke. Stroke; j cereb circ. 2004;35(12):2843–7. doi:10.1161/01.STR.0000147043.29399.f6.

    Article  CAS  Google Scholar 

  29. Heiss WD, Sobesky J, Hesselmann V. Identifying thresholds for penumbra and irreversible tissue damage. Stroke; j cereb circ. 2004;35(11 Suppl 1):2671–4. doi:10.1161/01.STR.0000143329.81997.8a.

    Article  Google Scholar 

  30. Jones TH, Morawetz RB, Crowell RM, Marcoux FW, FitzGibbon SJ, DeGirolami U, et al. Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg. 1981;54(6):773–82.

    Article  PubMed  CAS  Google Scholar 

  31. Heiss WD, Rosner G. Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol. 1983;14(3):294–301.

    Article  PubMed  CAS  Google Scholar 

  32. Baron JC. Mapping the ischaemic penumbra with PET: implications for acute stroke treatment. Cerebrovasc Dis. 1999;9(4):193–201.

    Article  PubMed  CAS  Google Scholar 

  33. Guadagno JV, Jones PS, Fryer TD, Barret O, Aigbirhio FI, Carpenter TA, et al. Local relationships between restricted water diffusion and oxygen consumption in the ischemic human brain. Stroke. 2006;37(7):1741–8.

    Article  PubMed  Google Scholar 

  34. Powers WJ, Press GA, Grubb RL, Gado M, Raichle ME. The effect of hemodynamically significant carotid artery disease on the hemodynamic status of the cerebral circulation. Ann Intern Med. 1987;106(1):27–34.

    PubMed  CAS  Google Scholar 

  35. Powers WJ, Raichle ME. Positron emission tomography and its application to the study of cerebrovascular disease in man. Stroke; j cereb circ. 1985;16(3):361–76.

    Article  CAS  Google Scholar 

  36. MacKenzie ET, McGeorge AP, Graham DI, Fitch W, Edvinsson L, Harper AM. Effects of increasing arterial pressure on cerebral blood flow in the baboon: influence of the sympathetic nervous system. Pflugers Arch. 1979;378(3):189–95.

    Article  PubMed  CAS  Google Scholar 

  37. Rapela CE, Green HD. Autoregulation of Canine Cerebral Blood Flow. Circ Res. 1964;15(SUPPL):205–12.

    PubMed  CAS  Google Scholar 

  38. Perlmutter JS, Herscovitch P, Powers WJ, Fox PT, Raichle ME. Standardized mean regional method for calculating global positron emission tomographic measurements. J cereb blood flow metab: official j Int Soc Cereb Blood Flow Metab. 1985;5(3):476–80.

    Article  CAS  Google Scholar 

  39. Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol. 1991;29(3):231–40.

    Article  PubMed  CAS  Google Scholar 

  40. Baron JC, Bousser MG, Comar D, Soussaline F, Castaigne P. Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. Potentials, limitations, and clinical applications in cerebral ischemic disorders. Eur Neurol. 1981;20(3):273–84.

    Article  PubMed  CAS  Google Scholar 

  41. Pauling L, Coryell CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A. 1936;22(4):210–6.

    Article  PubMed  CAS  Google Scholar 

  42. Thulborn KR, Waterton JC, Matthews PM, Radda GK. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta. 1982;714(2):265–70.

    Article  PubMed  CAS  Google Scholar 

  43. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87(24):9868–72.

    Article  PubMed  CAS  Google Scholar 

  44. Ogawa S, Lee TM, Barrere B. The sensitivity of magnetic resonance image signals of a rat brain to changes in the cerebral venous blood oxygenation. Magn Reson Med. 1993;29(2):205–10.

    Article  PubMed  CAS  Google Scholar 

  45. Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J. 1993;64(3):803–12.

    Article  PubMed  CAS  Google Scholar 

  46. Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn reson Med: Official J Soc Magn Reson Med/Soc Magn Reson Med. 2004;52(3):612–8. doi:10.1002/mrm.20198.

    Google Scholar 

  47. Kavec M, Grohn OH, Kettunen MI, Silvennoinen MJ, Penttonen M, Kauppinen RA. Use of spin echo T(2) BOLD in assessment of cerebral misery perfusion at 1.5 T. Magma. 2001;12(1):32–9.

    Article  PubMed  CAS  Google Scholar 

  48. Grohn OH, Kettunen MI, Penttonen M, Oja JM, van Zijl PC, Kauppinen RA. Graded reduction of cerebral blood flow in rat as detected by the nuclear magnetic resonance relaxation time T2: a theoretical and experimental approach. J Cereb Blood Flow Metab. 2000;20(2):316–26.

    Article  PubMed  CAS  Google Scholar 

  49. Grohn OH, Kauppinen RA. Assessment of brain tissue viability in acute ischemic stroke by BOLD MRI. NMR Biomed. 2001;14(7–8):432–40.

    Article  PubMed  CAS  Google Scholar 

  50. Grohn OH, Lukkarinen JA, Oja JM, van Zijl PC, Ulatowski JA, Traystman RJ, et al. Noninvasive detection of cerebral hypoperfusion and reversible ischemia from reductions in the magnetic resonance imaging relaxation time, T2. J Cereb Blood Flow Metab: Official J Int Soc Cereb Blood Flow Metab. 1998;18(8):911–20. doi:10.1097/00004647-199808000-00012.

    Article  CAS  Google Scholar 

  51. Wright GA, Hu BS, Macovski A. I.I. Rabi Award. Estimating oxygen saturation of blood in vivo with MR imaging at 1.5 T. J Magn Reson Imaging. 1991;1(3):275–83.

    Article  PubMed  CAS  Google Scholar 

  52. Foltz WD, Merchant N, Downar E, Stainsby JA, Wright GA. Coronary venous oximetry using MRI. Magn Reson Med. 1999;42(5):837–48.

    Article  PubMed  CAS  Google Scholar 

  53. Oja JM, Gillen JS, Kauppinen RA, Kraut M, van Zijl PC. Determination of oxygen extraction ratios by magnetic resonance imaging. J Cereb Blood Flow Metab. 1999;19(12):1289–95.

    Article  PubMed  CAS  Google Scholar 

  54. Silvennoinen MJ, Clingman CS, Golay X, Kauppinen RA, van Zijl PC. Comparison of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 Tesla. Magn Reson Med. 2003;49(1):47–60.

    Article  PubMed  CAS  Google Scholar 

  55. Lu H, Ge Y. Quantitative evaluation of oxygenation in venous vessels using T2-relaxation-under-spin-tagging MRI. Magn Reson Med: Official J Soc Magn Reson Med/Soc Magn Reson Med. 2008;60(2):357–63. doi:10.1002/mrm.21627.

    Google Scholar 

  56. Bolar DS, Rosen BR, Sorensen AG, Adalsteinsson E, editors. Quantitative imaging of extraction of oxygen and tissue consumption (QUIXOTIC) using velocity selective spin labeling. Proceeding of 17th annual meeting ISMRM, Honolulu, Hawaii, USA; 2009. P628; 2009 ISMRM.

  57. Guo J, Wong EC, editors. Imaging of oxygen extraction fraction using velocity selective excitation with arterial nulling (VSEAN). Proceeding of 18th annual meeting ISMRM, Stockholm, Sweden, 2010. P4057; 2010 ISMRM.

  58. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med. 1995;34(4):555–66.

    Article  PubMed  CAS  Google Scholar 

  59. Bandettini PA, Wong EC, Jesmanowicz A, Hinks RS, Hyde JS. Spin-echo and gradient-echo EPI of human brain activation using BOLD contrast: a comparative study at 1.5 T. NMR Biomed. 1994;7(1-2):12–20.

    Article  PubMed  CAS  Google Scholar 

  60. De Crespigny AJ, Wendland MF, Derugin N, Kozniewska E, Moseley ME. Real-time observation of transient focal ischemia and hyperemia in cat brain. Magn Reson Med: Official J Soc Magn Reson Med/Soc Magn Reson Med. 1992;27(2):391–7.

    Google Scholar 

  61. Roussel SA, van Bruggen N, King MD, Gadian DG. Identification of collaterally perfused areas following focal cerebral ischemia in the rat by comparison of gradient echo and diffusion-weighted MRI. J Cereb Blood Flow Metab: Official J Int Soc Cereb Blood Flow Metab. 1995;15(4):578–86. doi:10.1038/jcbfm.1995.74.

    Article  CAS  Google Scholar 

  62. Tamura H, Hatazawa J, Toyoshima H, Shimosegawa E, Okudera T. Detection of deoxygenation-related signal change in acute ischemic stroke patients by T2*-weighted magnetic resonance imaging. Stroke; J Cereb Circ. 2002;33(4):967–71.

    Article  Google Scholar 

  63. Wardlaw JM, von Heijne A. Increased oxygen extraction demonstrated on gradient echo (T2*) imaging in a patient with acute ischaemic stroke. Cerebrovasc Dis. 2006;22(5–6):456–8. doi:10.1159/000095384.

    Article  PubMed  CAS  Google Scholar 

  64. Morita N, Harada M, Uno M, Matsubara S, Matsuda T, Nagahiro S, et al. Ischemic findings of T2*-weighted 3-Tesla MRI in acute stroke patients. Cerebrovasc Dis. 2008;26(4):367–75. doi:10.1159/000151640.

    Article  PubMed  Google Scholar 

  65. Donswijk ML, Jones PS, Guadagno JV, Carpenter TA, Moustafa RR, Fryer TD, et al. T2*-weighted MRI versus oxygen extraction fraction PET in acute stroke. Cerebrovasc Dis. 2009;28(3):306–13. doi:10.1159/000229017.

    Article  PubMed  CAS  Google Scholar 

  66. Yablonskiy DA. Quantitation of intrinsic magnetic susceptibility-related effects in a tissue matrix. Phantom study. Magn Reson Med. 1998;39(3):417–28.

    Article  PubMed  CAS  Google Scholar 

  67. Geisler BS, Brandhoff F, Fiehler J, Saager C, Speck O, Rother J, et al. Blood-oxygen-level-dependent MRI allows metabolic description of tissue at risk in acute stroke patients. Stroke. 2006;37(7):1778–84.

    Article  PubMed  Google Scholar 

  68. Siemonsen S, Fitting T, Thomalla G, Horn P, Finsterbusch J, Summers P, et al. T2′ imaging predicts infarct growth beyond the acute diffusion-weighted imaging lesion in acute stroke. Radiology. 2008;248(3):979–86.

    Article  PubMed  Google Scholar 

  69. Zhang J, Chen YM, Zhang YT. Blood-oxygenation-level-dependent-(BOLD-) based R2′ MRI study in monkey model of reversible middle cerebral artery occlusion. J Biomed Biotechnol. 2011;2011:318346. doi:10.1155/2011/318346.

    PubMed  Google Scholar 

  70. Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med. 1994;32(6):749–63.

    Article  PubMed  CAS  Google Scholar 

  71. He X, Yablonskiy DA. Quantitative BOLD: mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: default state. Magn Reson Med: Official J Soc Magn Reson Med/Soc Magn Reson Med. 2007;57(1):115–26. doi:10.1002/mrm.21108.

    CAS  Google Scholar 

  72. An H, Lin W. Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging. J Cereb Blood Flow Metab. 2000;20(8):1225–36.

    Article  PubMed  CAS  Google Scholar 

  73. An H, Lin W. Impact of intravascular signal on quantitative measures of cerebral oxygen extraction and blood volume under normo- and hypercapnic conditions using an asymmetric spin echo approach. Magn Reson Med. 2003;50(4):708–16.

    Article  PubMed  Google Scholar 

  74. An H, Lin W. Cerebral oxygen extraction fraction and cerebral venous blood volume measurements using magnetic resonance imaging: effects of magnetic field variation. Magn Reson Med. 2001;47:958–66.

    Article  Google Scholar 

  75. An H, Liu Q, Chen Y, Lin W. Evaluation of MR-derived cerebral oxygen metabolic index in experimental hyperoxic hypercapnia, hypoxia, and ischemia. Stroke. 2009;40(6):2165–72.

    Article  PubMed  CAS  Google Scholar 

  76. Zhu XH, Zhang Y, Zhang N, Ugurbil K, Chen W. Noninvasive and three-dimensional imaging of CMRO(2) in rats at 9.4 T: reproducibility test and normothermia/hypothermia comparison study. J Cereb Blood Flow Metab. 2007;27(6):1225–34.

    Article  PubMed  Google Scholar 

  77. Sedlacik J, Kutschbach C, Rauscher A, Deistung A, Reichenbach JR. Investigation of the influence of carbon dioxide concentrations on cerebral physiology by susceptibility-weighted magnetic resonance imaging (SWI). NeuroImage. 2008;43(1):36–43.

    Article  PubMed  Google Scholar 

  78. Yang QX, Dardzinski BJ, Li S, Eslinger PJ, Smith MB. Multi-gradient echo with susceptibility inhomogeneity compensation (MGESIC): demonstration of fMRI in the olfactory cortex at 3.0 T. Magn Reson Med. 1997;37(3):331–5.

    Article  PubMed  CAS  Google Scholar 

  79. Sohlin MC, Schad LR. Susceptibility-related MR signal dephasing under nonstatic conditions: experimental verification and consequences for qBOLD measurements. J Magn Reson Imaging: JMRI. 2011;33(2):417–25. doi:10.1002/jmri.22423.

    Article  PubMed  Google Scholar 

  80. Sedlacik J, Reichenbach JR. Validation of quantitative estimation of tissue oxygen extraction fraction and deoxygenated blood volume fraction in phantom and in vivo experiments by using MRI. Magn Reson Med: Official J Soc Magn Reson Med/Soc Magn Reson Med. 2010;63(4):910–21. doi:10.1002/mrm.22274.

    Google Scholar 

  81. Christen T, Lemasson B, Pannetier N, Farion R, Segebarth C, Remy C, et al. Evaluation of a quantitative blood oxygenation level-dependent (qBOLD) approach to map local blood oxygen saturation. NMR Biomed. 2010. doi:10.1002/nbm.1603.

  82. Ashkanian M, Borghammer P, Gjedde A, Ostergaard L, Vafaee M. Improvement of brain tissue oxygenation by inhalation of carbogen. Neuroscience. 2008;156(4):932–8.

    Article  PubMed  CAS  Google Scholar 

  83. Altman DI, Lich LL, Powers WJ. Brief inhalation method to measure cerebral oxygen extraction fraction with PET: accuracy determination under pathologic conditions. J Nucl Med. 1991;32(9):1738–41.

    PubMed  CAS  Google Scholar 

  84. Hattori N, Bergsneider M, Wu HM, Glenn TC, Vespa PM, Hovda DA, et al. Accuracy of a method using short inhalation of (15)O-O(2) for measuring cerebral oxygen extraction fraction with PET in healthy humans. J Nucl Med. 2004;45(5):765–70.

    PubMed  Google Scholar 

  85. Mintun MA, Raichle ME, Martin WR, Herscovitch P. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med. 1984;25(2):177–87.

    PubMed  CAS  Google Scholar 

  86. Dickson JD, Ash TW, Williams GB, Harding SG, Carpenter TA, Menon DK, et al. Quantitative BOLD: the effect of diffusion. J Magn Reson Imaging: JMRI. 2010;32(4):953–61. doi:10.1002/jmri.22151.

    Article  PubMed  Google Scholar 

  87. Rosen BR, Turner R, Hunter GJ, Fordham JA. MR depicts perfusion of brain and heart. Diagn Imaging (San Franc). 1991;13(11):105–10.

    CAS  Google Scholar 

  88. Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab. 1996;16(6):1236–49.

    Article  PubMed  CAS  Google Scholar 

  89. Wong EC, Buxton RB, Frank LR. Quantitative perfusion imaging using arterial spin labeling. Neuroimaging Clin N Am. 1999;9(2):333–42.

    PubMed  CAS  Google Scholar 

  90. Detre JA, Samuels OB, Alsop DC, Gonzalez-At JB, Kasner SE, Raps EC. Noninvasive magnetic resonance imaging evaluation of cerebral blood flow with acetazolamide challenge in patients with cerebrovascular stenosis. J Magn Reson Imaging. 1999;10(5):870–5.

    Article  PubMed  CAS  Google Scholar 

  91. Lee JM, Vo KD, An H, Celik A, Lee Y, Hsu CY, et al. Magnetic resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke patients. Ann Neurol. 2003;53(2):227–32.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from National Institute of Health (NIH 5R01NS054079, NIH 5P50NS055977) and American Heart Association (AHA 0730321 N).

Conflicts of Interest

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, H., Liu, Q., Chen, Y. et al. Oxygen Metabolism in Ischemic Stroke Using Magnetic Resonance Imaging. Transl. Stroke Res. 3, 65–75 (2012). https://doi.org/10.1007/s12975-011-0141-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-011-0141-x

Keywords

Navigation