Skip to main content

Advertisement

Log in

Neuroimaging of Stroke and Ischemia in Animal Models

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) has dramatically changed our ability to diagnose and treat stroke as well as follow its evolution and response to treatment. Early stroke and ischemia can be visualized using diffusion-weighted imaging that utilizes water diffusion within tissues as a reporter for evolving neuropathology that reflects cytotoxic edema, particularly during the first several days after injury. T2-weighted imaging is used for evaluation of vasogenic edema but also is a reliable indicator of the volume and regional distribution of injured tissues. Perfusion-weighted imaging can be used to assess vascular function and also to evaluate potential tissues that might be rescued using therapeutic interventions (core vs. penumbra). Other imaging modalities such as magnetic resonance spectroscopy, diffusion tensor imaging, and susceptibility-weighted imaging are also being used to assist in rapid diagnosis of injured tissues following stroke. While visual analysis of MR data can provide some information about the evolution of injury, quantitative analyses allow definitive and objective evaluations of the injury and could be used to assess novel therapeutic strategies. We review here the basic uses of neuroimaging, focusing on MR approaches to assess stroke and ischemic injury in animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burgess RE, Kidwell CS. Use of MRI in the assessment of patients with stroke. Curr Neurol Neurosci Rep. 2011;11(1):28–34.

    Article  PubMed  Google Scholar 

  2. Wechsler LR. Imaging evaluation of acute ischemic stroke. Stroke. 2011;42(1 Suppl):S12–5.

    Article  PubMed  Google Scholar 

  3. Olivot JM, Albers GW. Diffusion-perfusion MRI for triaging transient ischemic attack and acute cerebrovascular syndromes. Curr Opin Neurol. 2011;24(1):44–9.

    Article  PubMed  Google Scholar 

  4. Thomalla G, Cheng B, Ebinger M, Hao Q, Tourdias T, Wu O, et al. DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4.5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol. 2011;10(11):978–86.

    Google Scholar 

  5. Badaut J, Ashwal S, Obenaus A. Aquaporins in cerebrovascular disease: a target for treatment of brain edema? Cerebrovasc Dis. 2011;31(6):521–31.

    Article  PubMed  CAS  Google Scholar 

  6. van der Toorn A, Sykova E, Dijkhuizen RM, Vorisek I, Vargova L, Skobisova E, et al. Dynamic changes in water ADC, energy metabolism, extracellular space volume, and tortuosity in neonatal rat brain during global ischemia. Magn Reson Med. 1996;36(1):52–60.

    Article  PubMed  Google Scholar 

  7. Huisman TA. Diffusion-weighted and diffusion tensor imaging of the brain, made easy. Cancer Imaging. 2011;10 Spec no A:S163-71.

  8. Ackerman JJ, Neil JJ. The use of MR-detectable reporter molecules and ions to evaluate diffusion in normal and ischemic brain. NMR Biomed. 2010;23(7):725–33.

    Article  PubMed  Google Scholar 

  9. Duong TQ, Sehy JV, Yablonskiy DA, Snider BJ, Ackerman JJ, Neil JJ. Extracellular apparent diffusion in rat brain. Magn Reson Med. 2001;45(5):801–10.

    Article  PubMed  CAS  Google Scholar 

  10. Karki K, Knight RA, Shen LH, Kapke A, Lu M, Li Y, et al. Chronic brain tissue remodeling after stroke in rat: a 1-year multiparametric magnetic resonance imaging study. Brain Res. 2010;1360:168–76.

    Article  PubMed  CAS  Google Scholar 

  11. Obenaus A, Dilmac N, Tone B, Tian HR, Hartman R, Digicaylioglu M, et al. Long-term magnetic resonance imaging of stem cells in neonatal ischemic injury. Ann Neurol. 2011;69(2):282–91.

    Article  PubMed  Google Scholar 

  12. Duong TQ, Fisher M. Applications of diffusion/perfusion magnetic resonance imaging in experimental and clinical aspects of stroke. Curr Atheroscler Rep. 2004;6(4):267–73.

    Article  PubMed  Google Scholar 

  13. Letourneur A, Roussel S, Toutain J, Bernaudin M, Touzani O. Impact of genetic and renovascular chronic arterial hypertension on the acute spatiotemporal evolution of the ischemic penumbra: a sequential study with MRI in the rat. J Cereb Blood Flow Metab. 2010;31(2):504–13.

    Article  PubMed  Google Scholar 

  14. Shen Q, Huang S, Du F, Duong TQ. Probing ischemic tissue fate with BOLD fMRI of brief oxygen challenge. Brain Res. 2011;1425:132–41.

    Google Scholar 

  15. Bratane BT, Bouley J, Schneider A, Bastan B, Henninger N, Fisher M. Granulocyte-colony stimulating factor delays PWI/DWI mismatch evolution and reduces final infarct volume in permanent-suture and embolic focal cerebral ischemia models in the rat. Stroke. 2009;40(9):3102–6.

    Article  PubMed  CAS  Google Scholar 

  16. Carlsson M, Wilson M, Martin AJ, Saeed M. Myocardial microinfarction after coronary microembolization in swine: MR imaging characterization. Radiology. 2009;250(3):703–13.

    Article  PubMed  Google Scholar 

  17. Harris AD, Kosior RK, Chen HS, Andersen LB, Frayne R. Evolution of hyperacute stroke over 6 hours using serial MR perfusion and diffusion maps. J Magn Reson Imaging. 2009;29(6):1262–70.

    Article  PubMed  Google Scholar 

  18. Belayev L, Khoutorova L, Atkins KD, Eady TN, Hong S, Lu Y, et al. Docosahexaenoic acid therapy of experimental ischemic stroke. Transl Stroke Res. 2011;2(1):33–41.

    Article  PubMed  CAS  Google Scholar 

  19. Wang R, Ashwal S, Tone B, Tian HR, Badaut J, Rasmussen A, et al. Albumin reduces blood–brain barrier permeability but does not alter infarct size in a rat model of neonatal stroke. Pediatr Res. 2007;62(3):261–6.

    Article  PubMed  CAS  Google Scholar 

  20. Tournier JD, Mori S, Leemans A. Diffusion tensor imaging and beyond. Magn Reson Med. 2011;65(6):1532–56.

    Article  PubMed  Google Scholar 

  21. de Figueiredo EH, Borgonovi AF, Doring TM. Basic concepts of MR imaging, diffusion MR imaging, and diffusion tensor imaging. Magn Reson Imaging Clin N Am. 2011;19(1):1–22.

    Article  PubMed  Google Scholar 

  22. Wang Y, Wang Q, Haldar J, Yeh F-C, Xie M, Sun P, et al. Quantification of increased cellularity during inflammatory demyelination. Brain. 2011. doi:10.1093/brain/awr307.

  23. Jiang Q, Zhang ZG, Chopp M. MRI evaluation of white matter recovery after brain injury. Stroke. 2010;41(10 Suppl):S112–3.

    Article  PubMed  Google Scholar 

  24. Wang S, Wu EX, Tam CN, Lau HF, Cheung PT, Khong PL. Characterization of white matter injury in a hypoxic-ischemic neonatal rat model by diffusion tensor MRI. Stroke. 2008;39(8):2348–53.

    Article  PubMed  Google Scholar 

  25. Shereen A, Nemkul N, Yang D, Adhami F, Dunn RS, Hazen ML, et al. Ex vivo diffusion tensor imaging and neuropathological correlation in a murine model of hypoxia-ischemia-induced thrombotic stroke. J Cereb Blood Flow Metab. 2011;31(4):1155–69.

    Article  PubMed  Google Scholar 

  26. Granziera C, D'Arceuil H, Zai L, Magistretti PJ, Sorensen AG, de Crespigny AJ. Long-term monitoring of post-stroke plasticity after transient cerebral ischemia in mice using in vivo and ex vivo diffusion tensor MRI. Open Neuroimag J. 2007;1:10–7.

    Article  PubMed  CAS  Google Scholar 

  27. Sundgren PC, Fan X, Weybright P, Welsh RC, Carlos RC, Petrou M, et al. Differentiation of recurrent brain tumor versus radiation injury using diffusion tensor imaging in patients with new contrast-enhancing lesions. Magn Reson Imaging. 2006;24(9):1131–42.

    Article  PubMed  CAS  Google Scholar 

  28. Phan KL, Orlichenko A, Boyd E, Angstadt M, Coccaro EF, Liberzon I, et al. Preliminary evidence of white matter abnormality in the uncinate fasciculus in generalized social anxiety disorder. Biol Psychiatry. 2009;66(7):691–4.

    Article  PubMed  Google Scholar 

  29. Arfanakis K, Hermann BP, Rogers BP, Carew JD, Seidenberg M, Meyerand ME. Diffusion tensor MRI in temporal lobe epilepsy. Magn Reson Imaging. 2002;20(7):511–9.

    Article  PubMed  Google Scholar 

  30. Karaszewski B, Thomas RG, Chappell FM, Armitage PA, Carpenter TK, Lymer GK, et al. Brain choline concentration. Early quantitative marker of ischemia and infarct expansion? Neurology. 2010;75(10):850–6.

    Article  PubMed  CAS  Google Scholar 

  31. Woo CW, Lee BS, Kim ST, Kim KS. Correlation between lactate and neuronal cell damage in the rat brain after focal ischemia: an in vivo 1H magnetic resonance spectroscopic (1H-MRS) study. Acta Radiol. 2010;51(3):344–50.

    Article  PubMed  Google Scholar 

  32. Hesselbarth D, Franke C, Hata R, Brinker G, Hoehn-Berlage M. High resolution MRI and MRS: a feasibility study for the investigation of focal cerebral ischemia in mice. NMR Biomed. 1998;11(8):423–9.

    Article  PubMed  CAS  Google Scholar 

  33. Harada K, Honmou O, Liu H, Bando M, Houkin K, Kocsis JD. Magnetic resonance lactate and lipid signals in rat brain after middle cerebral artery occlusion model. Brain Res. 2007;1134(1):206–13.

    Article  PubMed  CAS  Google Scholar 

  34. Kim YR, van Meer MP, Mandeville JB, Tejima E, Dai G, Topalkara K, et al. fMRI of delayed albumin treatment during stroke recovery in rats: implication for fast neuronal habituation in recovering brains. J Cereb Blood Flow Metab. 2007;27(1):142–53.

    Article  PubMed  CAS  Google Scholar 

  35. Grohn OH, Kauppinen RA. Assessment of brain tissue viability in acute ischemic stroke by BOLD MRI. NMR Biomed. 2001;14(7–8):432–40.

    Article  PubMed  CAS  Google Scholar 

  36. Leithner C, Royl G, Offenhauser N, Fuchtemeier M, Kohl-Bareis M, Villringer A, et al. Pharmacological uncoupling of activation induced increases in CBF and CMRO2. J Cereb Blood Flow Metab. 2010;30(2):311–22.

    Article  PubMed  CAS  Google Scholar 

  37. Tong KA, Ashwal S, Obenaus A, Nickerson JP, Kido D, Haacke EM. Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR Am J Neuroradiol. 2008;29(1):9–17.

    Article  PubMed  CAS  Google Scholar 

  38. Mittal S, Wu Z, Neelavalli J, Haacke EM. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol. 2009;30(2):232–52.

    Article  PubMed  CAS  Google Scholar 

  39. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol. 2009;30(1):19–30.

    Article  PubMed  CAS  Google Scholar 

  40. Kesavadas C, Santhosh K, Thomas B, Gupta AK, Kapilamoorthy TR, Bodhey N, et al. Signal changes in cortical laminar necrosis-evidence from susceptibility-weighted magnetic resonance imaging. Neuroradiology. 2009;51(5):293–8.

    Article  PubMed  Google Scholar 

  41. Viallon M, Altrichter S, Pereira VM, Nguyen D, Sekoranja L, Federspiel A, et al. Combined use of pulsed arterial spin-labeling and susceptibility-weighted imaging in stroke at 3 T. Eur Neurol. 2010;64(5):286–96.

    Article  PubMed  Google Scholar 

  42. Goos JD, van der Flier WM, Knol DL, Pouwels PJ, Scheltens P, Barkhof F, et al. Clinical relevance of improved microbleed detection by susceptibility-weighted magnetic resonance imaging. Stroke. 2011;42(7):1894–900.

    Article  PubMed  Google Scholar 

  43. Ding G, Jiang Q, Li L, Zhang L, Wang Y, Zhang ZG, et al. Cerebral tissue repair and atrophy after embolic stroke in rat: a magnetic resonance imaging study of erythropoietin therapy. J Neurosci Res. 2010;88(14):3206–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Obenaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obenaus, A., Ashwal, S. Neuroimaging of Stroke and Ischemia in Animal Models. Transl. Stroke Res. 3, 4–7 (2012). https://doi.org/10.1007/s12975-011-0139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-011-0139-4

Keywords

Navigation