Skip to main content

Advertisement

Log in

MRI Stem Cell Tracking for Therapy in Experimental Cerebral Ischemia

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Magnetic resonance has an established role in investigations on the evolution of stroke and the assessment of therapeutic strategies in experimental animals. Here we show that the technique has also an important place for the study of stem cell-mediated regenerative therapies after stroke. We review the literature by bridging from the methodological aspects of stem cell labeling via grafting and monitoring of cell dynamics after implantation into the brain all the way to MRI's role in analyzing the stem cell-mediated functional improvement. Thus, we have aimed at a view combining the focus on the monitoring of the cell activities with the aspect of lesion evolution while including also the essence of a potential functional improvement by the implantation of stem cells following stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adonai N, Nguyen KN, Walsh J, Iyer M, Toyokuni T, Phelps ME, et al. Ex vivo cell labeling with 64Cu–pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci. 2002;99(5):3030–5. doi:10.1073/pnas.052709599.

    PubMed  CAS  Google Scholar 

  2. Ahrens ET, Flores R, Xu H, Morel PA. In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol. 2005;23:983–7.

    PubMed  CAS  Google Scholar 

  3. Aime S, Castelli DD, Crich SG, Gianolio E, Terreno E. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications. Acc Chem Res. 2009;42(7):822–31. doi:10.1021/ar800192p.

    PubMed  CAS  Google Scholar 

  4. Ali MM, Yoo B, Pagel MD. Tracking the relative in vivo pharmacokinetics of nanoparticles with PARACEST MRI. Mol Pharm. 2009;6(5):1409–16. doi:10.1021/mp900040u.

    PubMed  CAS  Google Scholar 

  5. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8:963–70.

    PubMed  CAS  Google Scholar 

  6. Aswendt M, Gianolio E, Pariani G, Napolitano R, Fedeli F, Himmelreich U et al. Imaging GABAergic neurons by MRI: use of a responsive contrast agent for gluatmic acid decarboxylase. Proceedings of the European Molecular Imaging Meeting in Leiden, NL. 2011;30.

  7. Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 2005;57(6):874–82. doi:10.1002/ana.20501.

    PubMed  Google Scholar 

  8. Bendszus M, Stoll G. Caught in the act: in vivo mapping of macrophage infiltration in nerve injury by magnetic resonance imaging. J Neurosci. 2003;23(34):10892–6.

    PubMed  CAS  Google Scholar 

  9. Böhm-Sturm P, Mengler LM, Wecker SW, Hoehn M. In vivo tracking of human neural stem cells in the mouse brain with 19F MRI Proceedings of the European Molecular Imaging Meeting in Leiden, NL. 2011:49.

  10. Boncoraglio Giorgio B, Bersano A, Candelise L, Reynolds Brent A, Parati Eugenio A. Stem cell transplantation for ischemic stroke. Cochrane Database Syst Rev. 2010. doi:10.1002/14651858.CD007231.pub2.

  11. Brea D, Sobrino T, Ramos-Cabrer P, Castillo J. Inflammatory and neuroimmunomodulatory changes in acute cerebral ischemia. Cerebrovasc Dis. 2009;27 suppl 1:48–64.

    PubMed  CAS  Google Scholar 

  12. Bulte JWM, Douglas T, Witwer B, Zhang S-C, Strable E, Lewis BK, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol. 2001;19:1141–7.

    PubMed  CAS  Google Scholar 

  13. Bulte JWM, Zhang S-C, van Gelderen P, Herynek V, Jordan EK, Duncan ID, et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci U S A. 1999;96(26):15256–61. doi:10.1073/pnas.96.26.15256.

    PubMed  CAS  Google Scholar 

  14. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32(11):2682–8. doi:10.1161/hs1101.098367.

    PubMed  CAS  Google Scholar 

  15. Chung D-J, Choi C-B, Lee S-H, Kang E-H, Lee J-H, Hwang S-H, et al. Intraarterially delivered human umbilical cord blood-derived mesenchymal stem cells in canine cerebral ischemia. J Neurosci Res. 2009;87(16):3554–67. doi:10.1002/jnr.22162.

    PubMed  CAS  Google Scholar 

  16. Cohen B, Ziv K, Plaks V, Israely T, Kalchenko V, Harmelin A et al. MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat Med. 2007;13(4):498–503. http://www.nature.com/nm/journal/v13/n4/suppinfo/nm1497_S1.html.

    PubMed  CAS  Google Scholar 

  17. Cormode DP, Jarzyna PA, Mulder WJM, Fayad ZA. Modified natural nanoparticles as contrast agents for medical imaging. Adv Drug Deliv Rev. 2010;62(3):329–38.

    PubMed  CAS  Google Scholar 

  18. Couillard-Despres S, Finkl R, Winner B, Ploetz S, Wiedermann D, Aigner R, et al. In vivo optical imaging of neurogenesis: watching new neurons in the intact brain. Mol Imaging. 2008;7(1):28–34.

    PubMed  CAS  Google Scholar 

  19. Couillard-Despres S, Vreys R, Aigner L, Van Der Linden A. In vivo monitoring of adult neurogenesis in health and disease. Front Neurosci. 2011;5. doi:10.3389/fnins.2011.00067.

  20. Daadi MM, Maag A-L, Steinberg GK. Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS One. 2008;3(2):e1644.

    PubMed  Google Scholar 

  21. Darsalia V, Allison SJ, Cusulin C, Monni E, Kuzdas D, Kallur T, et al. Cell number and timing of transplantation determine survival of human neural stem cell grafts in stroke-damaged rat brain. J Cereb Blood Flow Metab. 2011;31:235–42.

    PubMed  Google Scholar 

  22. Darsalia V, Kallur T, Kokaia Z. Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur J Neurosci. 2007;26(3):605–14. doi:10.1111/j.1460-9568.2007.05702.x.

    PubMed  Google Scholar 

  23. Dodd SJ, Williams M, Suhan JP, Williams DS, Koretsky AP, Ho C. Detection of single mammalian cells by high-resolution magnetic resonance imaging. Biophys J. 1999;76(1):103–9.

    PubMed  CAS  Google Scholar 

  24. Duimstra JA, Femia FJ, Meade TJ. A gadolinium chelate for detection of β-glucuronidase: a self-immolative approach. J Am Chem Soc. 2005;127(37):12847–55. doi:10.1021/ja042162r.

    PubMed  CAS  Google Scholar 

  25. Einstein O, Ben-Hur T. The changing face of neural stem cell therapy in neurologic diseases. Arch Neurol. 2008;65(4):452–6. doi:10.1001/archneur.65.4.452.

    PubMed  Google Scholar 

  26. Elhami E, Goertzen A, Xiang B, Deng J, Stillwell C, Mzengeza S, et al. Viability and proliferation potential of adipose-derived stem cells following labeling with a positron-emitting radiotracer. Eur J Nucl Med Mol Imaging. 2011;38(7):1323–34. doi:10.1007/s00259-011-1753-9.

    PubMed  CAS  Google Scholar 

  27. England T, Martin P, Bath PMW. Stem cells for enhancing recovery after stroke: a review. Int J Stroke. 2009;4(2):101–10. doi:10.1111/j.1747-4949.2009.00253.x.

    PubMed  Google Scholar 

  28. Farr TD, Kallur T, Wiedermann D, Couillard-Després S, Aigner L, Hoehn M. Live imaging of stroke induced neurogenesis in the mouse brain. Proceedings of the Annual Scientific Meeting of the ISMRM, Honolulu, Hawaii. 2009.

  29. Farr TD, Seehafer JU, Nelles M, Hoehn M. Challenges towards MR imaging of the peripheral inflammatory response in the subacute and chronic stages of transient focal ischemia. NMR Biomed. 2011;24(1):35–45. doi:10.1002/nbm.1553.

    PubMed  Google Scholar 

  30. Gilad AA, Ziv K, McMahon MT, van Zijl PCM, Neeman M, Bulte JWM. MRI reporter genes. J Nucl Med. 2008;49(12):1905–8. doi:10.2967/jnumed.108.053520.

    PubMed  CAS  Google Scholar 

  31. Granot D, Scheinost D, Markakis EA, Papademetris X, Shapiro EM. Serial monitoring of endogenous neuroblast migration by cellular MRI. NeuroImage. 2011;57(3):817–24.

    PubMed  Google Scholar 

  32. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995–4021.

    PubMed  CAS  Google Scholar 

  33. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine. 2007;2(1):23–39. doi:10.2217/17435889.2.1.23.

    PubMed  CAS  Google Scholar 

  34. Guzman R, Uchida N, Bliss TM, He D, Christopherson KK, Stellwagen D, et al. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci U S A. 2007;104(24):10211–6. doi:10.1073/pnas.0608519104.

    PubMed  CAS  Google Scholar 

  35. Hancu I, Dixon WT, Woods M, Vinogradov E, Sherry AD, Lenkinski RE. CEST and PARACEST MR contrast agents. Acta Radiol. 2010;51(8):910–23. doi:10.3109/02841851.2010.502126.

    PubMed  Google Scholar 

  36. Harney AS, Meade TJ. Molecular imaging of in vivo gene expression. Future Med Chem. 2010;2(3):503–19. doi:10.4155/fmc.09.168.

    PubMed  CAS  Google Scholar 

  37. Hawrylak N, Ghosh P, Broadus J, Schlueter C, Greenough WT, Lauterbur PC. Nuclear magnetic resonance (NMR) imaging of iron oxide-labeled neural transplants. Exp Neurol. 1993;121(2):181–92. doi:10.1006/exnr.1993.1085.

    PubMed  CAS  Google Scholar 

  38. Helfer BM, Balducci A, Nelson AD, Janjic JM, Gil RR, Kalinski P, et al. Functional assesment of human dendritic cells labeled for in vivo F-19 magnetic resonance cell tracking. Cytotherapy. 2010;12:238–50.

    PubMed  CAS  Google Scholar 

  39. Helm L. Optimization of gadolinium-based MRI contrast agents for high magnetic-field applications. Future Med Chem. 2010;2(3):385–96.

    PubMed  CAS  Google Scholar 

  40. Himmelreich U, Aime S, Hieronymus T, Justicia C, Uggeri F, Zenke M, et al. A responsive MRI contrast agent to monitor functional cell status. NeuroImage. 2006;32(3):1142–9.

    PubMed  CAS  Google Scholar 

  41. Himmelreich U, Dresselaers T. Cell labeling and tracking for experimental models using magnetic resonance imaging. Methods. 2009;48(2):112–24.

    PubMed  CAS  Google Scholar 

  42. Himmelreich U, Hoehn M. Stem cell labeling for magnetic resonance imaging. Minim Invasive Ther Allied Technol. 2008;17(2):132–42. doi:10.1080/13645700801969873.

    PubMed  Google Scholar 

  43. Himmelreich U, Weber R, Ramos-Cabrer P, Wegener S, Kandal K, Shapiro EM, et al. Improved stem cell MR detectability in animal models by modification of the inhalation gas. Mol Imaging. 2005;4(2):104–9.

    PubMed  Google Scholar 

  44. Hoehn M, Himmelreich U. In vivo molecular MR imaging—potential and limits. In: Webb GA, editor. Annual reports in NMR spectroscopy—handbook of modern magnetic resonance, section medical science. London: Kluwer Academic Publishers; 2006. p. 133–48.

    Google Scholar 

  45. Hoehn M, Küstermann E, Blunk J, Wiedermann D, Trapp T, Wecker S, et al. Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci U S A. 2002;99(25):16267–72. doi:10.1073/pnas.242435499.

    PubMed  CAS  Google Scholar 

  46. Hoehn M, Küstermann E, Wiedermann D, Bührle C, Blunk J, Weber R, et al., editors. Stem cell migration after stroke observed by in vivo MR imaging. Pharmacology of cerebral ischemia. Stuttgart: Medpharm Scientific Publishers; 2004.

    Google Scholar 

  47. Hoehn M, Wiedermann D, Justicia C, Ramos-Cabrer P, Kruttwig K, Farr T, et al. Cell tracking using magnetic resonance imaging. J Physiol. 2007;584(1):25–30. doi:10.1113/jphysiol.2007.139451.

    PubMed  CAS  Google Scholar 

  48. Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, et al. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 2011;134(6):1790–807. doi:10.1093/brain/awr063.

    PubMed  Google Scholar 

  49. Huang J, Lee CC, Sutcliffe JL, Cherry SR, Tarantal AF. Radiolabeling rhesus monkey CD34+ hematopoietic and mesenchymal stem cells with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for microPET imaging. Mol Imaging. 2008;7(1):1–11.

    PubMed  CAS  Google Scholar 

  50. Jander S, Schroeter M, Saleh A. Imaging Inflammation in acute brain ischemia. Stroke. 2007;38(2):642–5. doi:10.1161/01.STR.0000250048.42916.ad.

    PubMed  Google Scholar 

  51. Jendelová P, Herynek V, DeCroos J, Glogarová K, Andersson B, Hájek M, et al. Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn Reson Med. 2003;50(4):767–76. doi:10.1002/mrm.10585.

    PubMed  Google Scholar 

  52. Jiang Q, Zhang ZG, Ding GL, Zhang L, Ewing JR, Wang L, et al. Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. NeuroImage. 2005;28(3):698–707. doi:10.1016/j.neuroimage.2005.06.063.

    PubMed  Google Scholar 

  53. Justicia C, Himmelreich U, Ramos-Cabrer P, Sprenger C, Hoehn M. In vivo tracking of endogenous stem cells by MRI after intraparenchymal injection of iron oxide nanoparticles. Mol Imaging. 2005;4:351–2.

    Google Scholar 

  54. Kallur T, Farr TD, Böhm-Sturm P, Kokaia Z, Hoehn M. Spatio-temporal dynamics, differentiation and viability of human neural stem cells after implantation into neonatal rat brain. Eur J Neurosci. 2011. doi:10.1111/j.1460-9568.2011.07759.x.

  55. Karussis D, Kassis I, Kurkalli BGS, Slavin S. Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): a proposed treatment for multiple sclerosis and other neuroimmunological/neurodegenerative diseases. J Neurol Sci. 2008;265(1):131–5.

    PubMed  CAS  Google Scholar 

  56. Kim D-E, Schellingerhout D, Ishii K, Shah K, Weissleder R. Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke. 2004;35(4):952–7. doi:10.1161/01.str.0000120308.21946.5d.

    PubMed  Google Scholar 

  57. Kim D, Chun B-G, Kim Y-K, Lee YH, Park C-S, Jeon I, et al. In vivo tracking of human mesenchymal stem cells in experimental stroke. Cell Transplant. 2007;16:1007–12.

    Google Scholar 

  58. Koehne G, Doubrovin M, Doubrovina E, Zanzonico P, Gallardo HF, Ivanova A, et al. Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotech. 2003;21(4):405–13.

    CAS  Google Scholar 

  59. Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J, et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology. 2000;55(4):565–9.

    PubMed  CAS  Google Scholar 

  60. Kraitchman D, Bulte J. Imaging of stem cells using MRI. Basic Res Cardiol. 2008;103(2):105–13. doi:10.1007/s00395-008-0704-5.

    PubMed  CAS  Google Scholar 

  61. Kruttwig K, Brueggemann C, Kaijzel E, Vorhagen S, Hilger T, Löwik C, et al. Development of a three-dimensional in vitro model for longitudinal observation of cell behavior: monitoring by magnetic resonance imaging and optical imaging. Mol Imaging Biol. 2010;12(4):367–76. doi:10.1007/s11307-009-0289-x.

    PubMed  Google Scholar 

  62. Küstermann E, Himmelreich U, Kandal K, Geelen T, Ketkar A, Wiedermann D, et al. Efficient stem cell labeling for MRI studies. Contrast Media Mol Imaging. 2008;3(1):27–37. doi:10.1002/cmmi.229.

    PubMed  Google Scholar 

  63. Laurent S, Bridot J-L, Elst LV, Muller RN. Magnetic iron oxide nanoparticles for biomedical applications. Future Med Chem. 2010;2(3):427–49. doi:10.4155/fmc.09.164.

    PubMed  CAS  Google Scholar 

  64. Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28(6):1099–106. doi:10.1002/stem.430.

    PubMed  Google Scholar 

  65. Li X, Blizzard KK, Zeng Z, DeVries AC, Hurn PD, McCullough LD. Chronic behavioral testing after focal ischemia in the mouse: functional recovery and the effects of gender. Exp Neurol. 2004;187(1):94–104. doi:10.1016/j.expneurol.2004.01.004.

    PubMed  Google Scholar 

  66. Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, et al. Human marrow stromal cell therapy for stroke in rat. Neurology. 2002;59(4):514–23.

    PubMed  CAS  Google Scholar 

  67. Lindvall O, Kokaia Z. Stem Cell Research in Stroke. Stroke. 2011. (in press). doi. 10.1161/strokeaha.110.599654. doi:10.1161/strokeaha.110.599654.

  68. Liu W, Frank JA. Detection and quantification of magnetically labeled cells by cellular MRI. Eur J Radiol. 2009;70(2):258–64.

    PubMed  Google Scholar 

  69. Liu Y, Lang B, Baskaya M, Dempsey R, Vemuganti R. The potential of neural stem cells to repair stroke-induced brain damage. Acta Neuropathol. 2009;117(5):469–80. doi:10.1007/s00401-009-0516-1.

    PubMed  Google Scholar 

  70. Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science. 1994;264:1145–8.

    PubMed  CAS  Google Scholar 

  71. Lundberg C, Martínez-Serrano A, Cattaneo E, McKay RDG, Björklund A. Survival, integration, and differentiation of neural stem cell lines after transplantation to the adult rat striatum. Exp Neurol. 1997;145(2):342–60.

    PubMed  CAS  Google Scholar 

  72. Lundberg J, Södersten E, Sundström E, Blanc KL, Andersson T, Hermanson O, et al. Targeted intra-arterial transplantation of stem cells to the injured CNS is more effective than intravenous administration—engraftment is dependent on cell type and adhesion molecule expression. Cell Transplant. 2011. doi:10.3727/096368911X576036.

  73. Matson ML, Wilson LJ. Nanotechnology and MRI contrast enhancement. Future Med Chem. 2010;2(3):491–502. doi:10.4155/fmc.10.3.

    PubMed  CAS  Google Scholar 

  74. Modo M, Beech JS, Meade TJ, Williams SCR, Price J. A chronic 1 year assessment of MRI contrast agent-labelled neural stem cell transplants in stroke. Neuroimage. 2009;47 Suppl 2:T133–42. doi:10.1016/j.neuroimage.2008.06.017.

    PubMed  Google Scholar 

  75. Modo M, Cash D, Mellodew K, Williams SCR, Fraser SE, Meade TJ, et al. Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage. 2002;17(2):803–11. doi:10.1006/nimg.2002.1194.

    PubMed  Google Scholar 

  76. Modo M, Hoehn M, Bulte JW. Cellular MR imaging. Mol Imaging. 2005;4(3):143–64.

    PubMed  Google Scholar 

  77. Modo M, Stroemer RP, Tang E, Patel S, Hodges H. Effects of implantation site of stem cell grafts on behavioral recovery from stroke damage. Stroke. 2002;33(9):2270–8. doi:10.1161/01.str.0000027693.50675.c5.

    PubMed  Google Scholar 

  78. Mulder WJM, Strijkers GJ, Griffioen AW, van Bloois L, Molema G, Storm G, et al. A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets. Bioconjugate Chem. 2004;15(4):799–806. doi:10.1021/bc049949r.

    CAS  Google Scholar 

  79. Mulder WJM, Strijkers GJ, van Tilborg GAF, Griffioen AW, Nicolay K. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed. 2006;19(1):142–64. doi:10.1002/nbm.1011.

    PubMed  CAS  Google Scholar 

  80. Obenaus A, Dilmac N, Tone B, Tian HR, Hartman R, Digicaylioglu M, et al. Long-term magnetic resonance imaging of stem cells in neonatal ischemic injury. Ann Neurol. 2011;69(2):282–91. doi:10.1002/ana.22168.

    PubMed  Google Scholar 

  81. Partlow KC, Chen JJ, Brant JA, Neubauer AM, Meyerrose TE, Creer MH, et al. F-19 magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J. 2007;21(8):1647–54. doi:10.1096/fj.06-6505com.

    PubMed  CAS  Google Scholar 

  82. Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature. 2005;436(7048):266–71. doi:http://www.nature.com/nature/journal/v436/n7048/suppinfo/nature03889_S1.html.

    PubMed  CAS  Google Scholar 

  83. Ramos-Cabrer P, Justicia C, Wiedermann D, Hoehn M. Stem cell mediation of functional recovery after stroke in the rat. PLoS One. 2010;5(9):e12779.

    PubMed  Google Scholar 

  84. Reumers V, Deroose CM, Krylychkina O, Nuyts J, Geraerts M, Mortelmans L, et al. Noninvsive and quantitative monitoring of adult neuronal stem cell migration in mouse brain using bioluminescence imaging. Stem Cells. 2008;26:2382–90.

    PubMed  Google Scholar 

  85. Rueger MA, Backes H, Walberer M, Neumaier B, Ullrich R, Simard M-L, et al. Noninvasive imaging of endogenous neural stem cell mobilization in vivo using positron emission tomography. J Neurosci. 2010;30(18):6454–60. doi:10.1523/jneurosci.6092-09.2010.

    PubMed  CAS  Google Scholar 

  86. Saleh A, Wiedermann D, Schroeter M, Jonkmanns C, Jander S, Hoehn M. Central nervous system inflammatory response after cerebral infarction as detected by magnetic resonance imaging. NMR Biomed. 2004;17:163–9.

    PubMed  Google Scholar 

  87. Schwarz S, Fernandes F, Sanroman L, Hodenius M, Lang C, Himmelreich U, et al. Synthetic and biogenic magnetic nanoparticles for tracking of stem cells and dendritic cells. MAGMA. 2009;321:1533–8.

    CAS  Google Scholar 

  88. Shapiro EM, Gonzalez-Perez O, Manuel García-Verdugo J, Alvarez-Buylla A, Koretsky AP. Magnetic resonance imaging of the migration of neuronal precursors generated in the adult rodent brain. Neuroimage. 2006;32(3):1150–7.

    PubMed  Google Scholar 

  89. Shapiro EM, Sharer K, Skrtic S, Koretsky AP. In vivo detection of single cells by MRI. Magn Reson Med. 2006;55(2):242–9. doi:10.1002/mrm.20718.

    PubMed  Google Scholar 

  90. Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE, Koretsky AP. MRI detection of single particles for cellular imaging. Proc Natl Acad Sci U S A. 2004;101(30):10901–6. doi:10.1073/pnas.0403918101.

    PubMed  CAS  Google Scholar 

  91. Shen LH, Li Y, Chen J, Zhang J, Vanguri P, Borneman J, et al. Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience. 2006;137(2):393–9. doi:10.1016/j.neuroscience.2005.08.092.

    PubMed  CAS  Google Scholar 

  92. Shimada IS, Spees JL. Stem and progenitor cells for neurological repair: minor issues, major hurdles, and exciting opportunities for paracrine-based therapeutics. J Cell Biochem. 2011;112(2):374–80. doi:10.1002/jcb.22963.

    PubMed  CAS  Google Scholar 

  93. So M-K, Xu C, Loening AM, Gambhir SS, Rao J. Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotech. 2006;24(3):339–43. doi:http://www.nature.com/nbt/journal/v24/n3/suppinfo/nbt1188_S1.html.

    CAS  Google Scholar 

  94. Srinivas M, Morel PA, Ernst LA, Laidlaw DH, Ahrens ET. Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn Reson Med. 2007;58(4):725–34. doi:10.1002/mrm.21352.

    PubMed  CAS  Google Scholar 

  95. Srinivas M, Turner MS, Janjic JM, Morel PA, Laidlaw DH, Ahrens ET. In vivo cytometry of antigen-specific T cells using F-19 MRI. Magn Reson Med. 2009;62(3):747–53. doi:10.1002/mrm.22063.

    PubMed  CAS  Google Scholar 

  96. Stoll G, Bendszus M. Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging. Neuroscience. 2009;158(3):1151–60.

    PubMed  CAS  Google Scholar 

  97. Strijkers GJ, Mulder WJM, van Heeswijk RB, Frederik PM, Bomans P, Magusin PCMM, et al. Relaxivity of liposomal paramagnetic MRI contrast agents. Magn Reson Mater Phys Biol Med. 2005;18(4):186–92. doi:10.1007/s10334-005-0111-y.

    CAS  Google Scholar 

  98. Strijkers GJ, Mulder WJM, van Tilborg GAF, Nicolay K. MRI contrast agents: current status and future perspectives. Anticancer Agents Med Chem. 2007;7(3):291–305.

    PubMed  CAS  Google Scholar 

  99. Stroemer P, Patel S, Hope A, Oliveira C, Pollock K, Sinden J. The neural stem cell line CTX0E03 promotes behavioral recovery and endogenous neurogenesis after experimental stroke in a dose-dependent fashion. Neurorehabil Neural Repair. 2009;23(9):895–909. doi:10.1177/1545968309335978.

    PubMed  Google Scholar 

  100. Sumner JP, Shapiro EM, Maric D, Conroy R, Koretsky AP. In vivo labeling of adult neural progenitors for MRI with micron sized particles of iron oxide: quantification of labeled cell phenotype. Neuroimage. 2009;44(3):671–8.

    PubMed  Google Scholar 

  101. Sutton E, Henning T, Pichler B, Bremer C, Daldrup-Link H. Cell tracking with optical imaging. Eur Radiol. 2008;18(10):2021–32. doi:10.1007/s00330-008-0984-z.

    PubMed  Google Scholar 

  102. Sykova E, Jendelova P. Migration, fate and in vivo imaging of adult stem cells in the CNS. Cell Death Differ. 2007;14(7):1336–42.

    PubMed  CAS  Google Scholar 

  103. Theus MH, Wei L, Cui L, Francis K, Hu X, Keogh C, et al. In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol. 2008;210(2):656–70. doi:10.1016/j.expneurol.2007.12.020.

    PubMed  CAS  Google Scholar 

  104. Tung C-H. Fluorescent peptide probes for in vivo diagnostic imaging. Pept Sci. 2004;76(5):391–403. doi:10.1002/bip.20139.

    CAS  Google Scholar 

  105. van Velthoven CTJ, Kavelaars A, van Bel F, Heijnen CJ. Regeneration of the ischemic brain by engineered stem cells: fuelling endogenous repair processes. Brain Res Rev. 2009;61(1):1–13. doi:10.1016/j.brainresrev.2009.03.003.

    PubMed  Google Scholar 

  106. Vande Velde G, Rangarajan JR, Toelen J, Dresselaers T, Ibrahimi A, Krylychkina O, et al. Evaluation of the specificity and sensitivity of ferritin as an MRI reporter gene in the mouse brain using lentiviral and adeno-associated viral vectors. Gene Therapy. 2011;18:594–605.

    PubMed  CAS  Google Scholar 

  107. Veizovic T, Beech JS, Stroemer RP, Watson WP, Hodges H. Resolution of stroke deficits following contralateral grafts of conditionally immortal neuroepithelial stem cells. Stroke. 2001;32(4):1012–9.

    PubMed  CAS  Google Scholar 

  108. Vreys R, Soenen SJH, De Cuyper M, Van der Linden A. Background migration of USPIO/MLs is a major drawback for in situ labeling of endogenous neural progenitor cells. Contrast Media Mol Imaging. 2011;6:1–6.

    PubMed  CAS  Google Scholar 

  109. Vreys R, Velde GV, Krylychkina O, Vellema M, Verhoye M, Timmermans J-P, et al. MRI visualization of endogenous neural progenitor cell migration along the RMS in the adult mouse brain: validation of various MPIO labeling strategies. NeuroImage. 2010;49(3):2094–103.

    PubMed  Google Scholar 

  110. Walczak P, Kedziorek DA, Gilad AA, Lin S, Bulte JWM. Instant MR labeling of stem cells using magnetoelectroporation. Magn Reson Med. 2005;54(4):769–74. doi:10.1002/mrm.20701.

    PubMed  CAS  Google Scholar 

  111. Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, et al. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke. 2008;39(5):1569–74. doi:10.1161/strokeaha.107.502047.

    PubMed  CAS  Google Scholar 

  112. Walker PA, Letourneau PA, Bedi S, Shah SK, Cox Jr CS. Progenitor cells as remote “bioreactors”: neuroprotection via modulation of the systemic inflammatory response. World J Stem Cells. 2011;3(2):9–18.

    PubMed  Google Scholar 

  113. Wang J, Tian M, Zhang H. PET molecular imaging in stem cell therapy for neurological diseases. Eur J Nucl Med Mol Imaging. 2011;38:1926–38. doi:10.1007/s00259-011-1860-7.

    PubMed  Google Scholar 

  114. Weber R, Ramos-Cabrer P, Justicia C, Wiedermann D, Strecker C, Sprenger C, et al. Early prediction of functional recovery after experimental stroke: functional magnetic resonance imaging, electrophysiology, and behavioral testing in rats. J Neurosci. 2008;28(5):1022–9. doi:10.1523/jneurosci.4147-07.2008.

    PubMed  CAS  Google Scholar 

  115. Weber R, Ramos-Cabrer P, Wiedermann D, van Camp N, Hoehn M. A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. Neuroimage. 2006;29(4):1303–10. doi:10.1016/j.neuroimage.2005.08.028.

    PubMed  Google Scholar 

  116. Weber R, Wegener S, Ramos-Cabrer P, Wiedermann D, Hoehn M. MRI detection of macrophage activity after experimental stroke in rats: new indicators for late appearance of vascular degradation? Magn Reson Med. 2005;54:59–66.

    PubMed  Google Scholar 

  117. Wei L, Cui L, Snider BJ, Rivkin M, Yu SS, Lee C-S et al. Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiology of Disease.19(1–2):183–93. 2005. doi:10.1016/j.nbd.2004.12.016.

    Google Scholar 

  118. Wei L, Cui L, Snider BJ, Rivkin M, Yu SS, Lee C-S, et al. Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol Dis. 2005;19(1–2):183–93. doi:10.1016/j.nbd.2004.12.016.

    PubMed  CAS  Google Scholar 

  119. Weigert R, Sramkova M, Parente L, Amornphimoltham P, Masedunskas A. Intravital microscopy: a novel tool to study cell biology in living animals. Histochem Cell Biol. 2010;133(5):481–91. doi:10.1007/s00418-010-0692-z.

    PubMed  CAS  Google Scholar 

  120. Wu W, Chen X, Hu C, Li J, Yu Z, Cai W. Transplantation of neural stem cells expressing hypoxia-inducible factor-1[alpha] (HIF-1[alpha]) improves behavioral recovery in a rat stroke model. J Clin Neurosci. 2010;17(1):92–5. doi:10.1016/j.jocn.2009.03.039.

    PubMed  CAS  Google Scholar 

  121. Yazyev OV, Helm L. Gadolinium (III) ion in liquid water: Structure, dynamics, and magnetic interactions from first principles. J Chem Phys. 2007;127(8):084506–8.

    PubMed  Google Scholar 

  122. Zhang ZG, Jiang Q, Zhang R, Zhang L, Wang L, Zhang L, et al. Magnetic resonance imaging and neurosphere therapy of stroke in rat. Ann Neurol. 2003;53(2):259–63. doi:10.1002/ana.10467.

    PubMed  Google Scholar 

  123. Zhao L-R, Duan W-M, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol. 2002;174(1):11–20. doi:10.1006/exnr.2001.7853.

    PubMed  Google Scholar 

Download references

Acknowledgment

Financial support from the EU grant HEALTH-F5-2008-201842 (ENCITE) and from the funds by the German Federal Ministry of Education and Research (BMBF-0314104) are gratefully acknowledged. P R-C acknowledges the Instituto Carlos III of the Spanish Ministry of Health for a research contract of the Miguel Servet program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Hoehn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos-Cabrer, P., Hoehn, M. MRI Stem Cell Tracking for Therapy in Experimental Cerebral Ischemia. Transl. Stroke Res. 3, 22–35 (2012). https://doi.org/10.1007/s12975-011-0111-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-011-0111-3

Keywords

Navigation