Skip to main content

Advertisement

Log in

Iron Enhances the Neurotoxicity of Amyloid β

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Brain microbleeds often occur in Alzheimer’s disease patients. Our previous studies have demonstrated that iron contributes to brain injury following intracerebral hemorrhage. This study investigated the effect of iron on amyloid β (Aβ)-mediated brain injury. There are two parts to this study. In the first part, rats received an intracaudate injection of saline, iron, Aβ 25-35, or iron + Aβ 25-35. In the second part, rats received intracaudate injection of iron + Aβ and were treated with saline or cystamine, an inhibitor of transglutaminase. Rats were killed after 24 h for brain edema measurement. DNA damage, neuronal death, and tissue-type transglutaminase (tTG) expression were also examined. We found that brain water content in the ipsilateral caudate was higher (p < 0.05) in rats injected with iron + Aβ than with iron, Aβ, or saline. Combined iron + Aβ injection also resulted in more severe DNA damage (both single- and double-strand, p < 0.01) and more Fluoro-Jade C staining (p < 0.05). Expression of tTG increased markedly in the iron + Aβ group (p < 0.05), and treatment with a tTG inhibitor reduced brain edema (p < 0.05) and reduced degenerating neurons (124 ± 25 vs. 249 ± 50/mm2 in vehicle-treated group, p < 0.05). These results suggest that increased brain iron from microbleeds may exaggerate brain Aβ toxicity and that tTG is involved in the enhanced toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Younkin SG. The role of A beta 42 in Alzheimer’s disease. J Physiol Paris. 1998;92(3–4):289–92.

    Article  PubMed  CAS  Google Scholar 

  2. Pettersen JA, Sathiyamoorthy G, Gao FQ, Szilagyi G, Nadkarni NK, St George-Hyslop P, et al. Microbleed topography, leukoaraiosis, and cognition in probable Alzheimer disease from the Sunnybrook Dementia Study. Arch Neurol. 2008;65(6):790–5.

    Article  PubMed  Google Scholar 

  3. Hanyu H, Tanaka Y, Shimizu S, Takasaki M, Abe K. Cerebral microbleeds in Alzheimer’s disease. J Neurol. 2003;250(12):1496–7.

    Article  PubMed  Google Scholar 

  4. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral hemorrhage. Lancet Neurol. 2006;5(1):53–63.

    Article  PubMed  Google Scholar 

  5. Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G. Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke. 2009;40(6):2241–3.

    Article  PubMed  CAS  Google Scholar 

  6. Okauchi M, Hua Y, Keep RF, Morgenstern LB, Schallert T, Xi G. Deferoxamine treatment for intracerebral hemorrhage in aged rats: therapeutic time window and optimal duration. Stroke. 2010;41(2):375–82.

    Article  PubMed  CAS  Google Scholar 

  7. Castellani RJ, Moreira PI, Liu G, Dobson J, Perry G, Smith MA, et al. Iron: the redox-active center of oxidative stress in Alzheimer disease. Neurochem Res. 2007;32(10):1640–5.

    Article  PubMed  CAS  Google Scholar 

  8. McLachlan DRC, Dalton AJ, Kruck TP, Bell MY, Smith WL, Kalow W, et al. Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet. 1991;337(8753):1304–8.

    Article  Google Scholar 

  9. Kim SY, Grant P, Lee JH, Pant HC, Steinert PM. Differential expression of multiple transglutaminases in human brain. Increased expression and cross-linking by transglutaminases 1 and 2 in Alzheimer’s disease. J Biol Chem. 1999;274(43):30715–21.

    Article  PubMed  CAS  Google Scholar 

  10. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, et al. Gene regulation and DNA damage in the ageing human brain. Nature. 2004;429(6994):883–91.

    Article  PubMed  CAS  Google Scholar 

  11. Okauchi M, Xi G, Keep RF, Hua Y. Tissue-type transglutaminase and the effects of cystamine on intracerebral hemorrhage-induced brain edema and neurological deficits. Brain Res. 2009;1249:229–36.

    Article  PubMed  CAS  Google Scholar 

  12. Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg. 1998;89:991–6.

    Article  PubMed  CAS  Google Scholar 

  13. Wu J, Hua Y, Keep RF, Schallert T, Hoff JT, Xi G. Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage. Brain Res. 2002;953(1–2):45–52.

    Article  PubMed  CAS  Google Scholar 

  14. Wu J, Hua Y, Keep RF, Nakamura T, Hoff JT, Xi G. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke. 2003;34(12):2964–9.

    Article  PubMed  CAS  Google Scholar 

  15. Koeppen AH, Dickson AC, Smith J. Heme oxygenase in experimental intracerebral hemorrhage: the benefit of tin-mesoporphyrin. J Neuropathol Exp Neurol. 2004;63(6):587–97.

    PubMed  CAS  Google Scholar 

  16. Nakamura T, Keep RF, Hua Y, Hoff JT, Xi G. Oxidative DNA injury after experimental intracerebral hemorrhage. Brain Res. 2005;1039:30–6.

    Article  PubMed  CAS  Google Scholar 

  17. Siesjo BK, Agardh CD, Bengtsson F. Free radicals and brain damage. Cerebrovasc Brain Metabol Rev. 1989;1(3):165–211 (Review, 205 refs).

    CAS  Google Scholar 

  18. Regan RF, Panter SS. Neurotoxicity of hemoglobin in cortical cell culture. Neurosci Lett. 1993;153(2):219–22.

    Article  PubMed  CAS  Google Scholar 

  19. Wang X, Mori T, Sumii T, Lo EH. Hemoglobin-induced cytotoxicity in rat cerebral cortical neurons: caspase activation and oxidative stress. Stroke. 2002;33:1882–8.

    Article  PubMed  CAS  Google Scholar 

  20. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA. 1985;82(12):4245–9.

    Article  PubMed  CAS  Google Scholar 

  21. Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, et al. Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42. J Neurochem. 2000;75(3):1219–33.

    Article  PubMed  CAS  Google Scholar 

  22. Schubert D, Chevion M. The role of iron in beta amyloid toxicity. Biochem Biophys Res Commun. 1995;216(2):702–7.

    Article  PubMed  CAS  Google Scholar 

  23. Wilhelmus MM, van Dam AM, Drukarch B. Tissue transglutaminase: a novel pharmacological target in preventing toxic protein aggregation in neurodegenerative diseases. Eur J Pharmacol. 2008;585(2–3):464–72.

    Article  PubMed  CAS  Google Scholar 

  24. Johnson GV, Cox TM, Lockhart JP, Zinnerman MD, Miller ML, Powers RE. Transglutaminase activity is increased in Alzheimer’s disease brain. Brain Res. 1997;751(2):323–9.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang W, Johnson BR, Suri DE, Martinez J, Bjornsson TD. Immunohistochemical demonstration of tissue transglutaminase in amyloid plaques. Acta Neuropathol. 1998;96(4):395–400.

    Article  PubMed  CAS  Google Scholar 

  26. Citron BA, Suo Z, SantaCruz K, Davies PJ, Qin F, Festoff BW. Protein crosslinking, tissue transglutaminase, alternative splicing and neurodegeneration. Neurochem Int. 2002;40(1):69–78.

    Article  PubMed  CAS  Google Scholar 

  27. Dudek SM, Johnson GV. Transglutaminase facilitates the formation of polymers of the beta-amyloid peptide. Brain Res. 1994;651(1–2):129–33.

    Article  PubMed  CAS  Google Scholar 

  28. Varadarajan S, Kanski J, Aksenova M, Lauderback C, Butterfield DA. Different mechanisms of oxidative stress and neurotoxicity for Alzheimer’s A beta(1-42) and A beta(25-35). J Am Chem Soc. 2001;123(24):5625–31 (Research support, U.S. Gov’t, P.H.S.).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants NS-017760, NS-039866, and NS-057539 from the National Institutes of Health (NIH) and 0840016N from the American Heart Association (AHA). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH and AHA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Hua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Xi, G., Keep, R.F. et al. Iron Enhances the Neurotoxicity of Amyloid β. Transl. Stroke Res. 3, 107–113 (2012). https://doi.org/10.1007/s12975-011-0099-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-011-0099-8

Keywords

Navigation