Advertisement

Translational Stroke Research

, Volume 2, Issue 1, pp 112–127 | Cite as

A Protocol for Characterizing the Impact of Collateral Flow after Distal Middle Cerebral Artery Occlusion

  • Richard Anthony DeFazio
  • Sean Levy
  • Carmen L. Morales
  • Rebecca V. Levy
  • Hung W. Lin
  • Tatjana Abaffy
  • Kunjan R. Dave
  • Brant D. Watson
  • Miguel A. Perez-Pinzon
  • Victoria Ohanna
Protocols

Abstract

In humans and in animal models of stroke, collateral blood flow between territories of the major pial arteries has a profound impact on cortical infarct size. However, there is a gap in our understanding of the genetic determinants of collateral formation and flow, as well as the signaling pathways and neurovascular interactions regulating this flow. Previous studies have demonstrated that collateral flow between branches of the anterior cerebral artery and the middle cerebral artery (MCA) can protect mouse cortex from infarction after MCA occlusion. Because the number and diameter of collaterals vary among mouse strains and after transgenic manipulations, a combination of methods is required to control for these variations. Here, we report an inexpensive approach to characterizing the cerebrovascular anatomy, and in vivo monitoring of cerebral blood flow as well. Further, we introduce a new, minimally invasive method for the occlusion of distal MCA branches. These methods will permit a new generation of studies on the mechanisms regulating collateral remodeling and cortical blood flow after stroke.

Keywords

Photothrombosis Anastomoses Collateral blood flow Quantum dots Vessel painting Laser speckle imaging 

Notes

Acknowledgements

Supported by the University of Miami Scientific Awards Committee (RAD) and NIH grants NS034773 and NS045676 (MAP).

References

  1. 1.
    Bang OY, Saver JL, Buck BH, Alger JR, Starkman S, Ovbiagele B, et al. Impact of collateral flow on tissue fate in acute ischaemic stroke. J Neurol Neurosurg Psychiatry. 2008;79(6):625–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Wei L, Erinjeri JP, Rovainen CM, Woolsey TA. Collateral growth and angiogenesis around cortical stroke. Stroke. 2001;32(9):2179–84.CrossRefPubMedGoogle Scholar
  3. 3.
    Majid A, He YY, Gidday JM, Kaplan SS, Gonzales ER, Park TS, et al. Differences in vulnerability to permanent focal cerebral ischemia among 3 common mouse strains. Stroke. 2000;31(11):2707–14.PubMedGoogle Scholar
  4. 4.
    Keum S, Marchuk DA. A locus mapping to mouse chromosome 7 determines infarct volume in a mouse model of ischemic stroke. Circ Cardiovasc Genet. 2009;2(6):591–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Chalothorn D, Faber JE. Formation and maturation of the native cerebral collateral circulation. J Mol Cell Cardiol. 2010;49:251–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang H, Prabhakar P, Sealock R, Faber JE. Wide genetic variation in the native pial collateral circulation is a major determinant of variation in severity of stroke. J Cereb Blood Flow Metab. 2010;30(5):923–34.CrossRefPubMedGoogle Scholar
  7. 7.
    Chalothorn D, Zhang H, Smith JE, Edwards JC, Faber JE. Chloride intracellular channel-4 is a determinant of native collateral formation in skeletal muscle and brain. Circ Res. 2009;105(1):89–98.CrossRefPubMedGoogle Scholar
  8. 8.
    Clayton JA, Chalothorn D, Faber JE. Vascular endothelial growth factor-A specifies formation of native collaterals and regulates collateral growth in ischemia. Circ Res. 2008;103(9):1027–36.CrossRefPubMedGoogle Scholar
  9. 9.
    Chalothorn D, Clayton JA, Zhang H, Pomp D, Faber JE. Collateral density, remodeling, and VEGF-A expression differ widely between mouse strains. Physiol Genomics. 2007;30(2):179–91.CrossRefPubMedGoogle Scholar
  10. 10.
    Li Y, Song Y, Zhao L, Gaidosh G, Laties AM, Wen R. Direct labeling and visualization of blood vessels with lipophilic carbocyanine dye DiI. Nat Protoc. 2008;3(11):1703–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Mattson DL. Long-term measurement of arterial blood pressure in conscious mice. Am J Physiol. 1998;274(2 Pt 2):R564–70.PubMedGoogle Scholar
  12. 12.
    Yang G, Pan F, Parkhurst CN, Grutzendler J, Gan WB. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc. 2010;5(2):201–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Dave KR, DeFazio RA, Raval AP, Dashkin O, Saul I, Iceman KE, et al. Protein kinase C epsilon activation delays neuronal depolarization during cardiac arrest in the euthermic arctic ground squirrel. J Neurochem. 2009;110(4):1170–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Watson BD, Dietrich WD, Prado R, Ginsberg MD. Argon laser-induced arterial photothrombosis. Characterization and possible application to therapy of arteriovenous malformations. J Neurosurg. 1987;66(5):748–54.CrossRefPubMedGoogle Scholar
  15. 15.
    Samia AC, Chen X, Burda C. Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc. 2003;125(51):15736–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Zieve PD, Solomon HM, Krevans JR. The effect of hematoporphyrin and light on human platelets. I. Morphologic, functional, and biochemical changes. J Cell Physiol. 1966;67(2):271–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Richard Anthony DeFazio
    • 1
  • Sean Levy
    • 1
  • Carmen L. Morales
    • 1
  • Rebecca V. Levy
    • 1
  • Hung W. Lin
    • 1
  • Tatjana Abaffy
    • 2
  • Kunjan R. Dave
    • 1
  • Brant D. Watson
    • 1
  • Miguel A. Perez-Pinzon
    • 1
  • Victoria Ohanna
    • 1
  1. 1.Cerebral Vascular Disease Research Center, Department of Neurology, Miller School of MedicineUniversity of MiamiMiamiUSA
  2. 2.Department of Pharmacology, Miller School of MedicineUniversity of MiamiMiamiUSA

Personalised recommendations