Skip to main content

Advertisement

Log in

Pharmacologic Preconditioning: Translating the Promise

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

A transient, ischemia-resistant phenotype known as “ischemic tolerance” can be established in brain in a rapid or delayed fashion by a preceding noninjurious “preconditioning” stimulus. Initial preclinical studies of this phenomenon relied primarily on brief periods of ischemia or hypoxia as preconditioning stimuli, but it was later realized that many other stressors, including pharmacologic ones, are also effective. This review highlights the surprisingly wide variety of drugs now known to promote ischemic tolerance, documented and to some extent mechanistically characterized in preclinical animal models of stroke. Although considerably more experimentation is needed to thoroughly validate the ability of any currently identified preconditioning agent to protect ischemic brain, the fact that some of these drugs are already clinically approved for other indications implies that the growing enthusiasm for translational success in the field of pharmacologic preconditioning may be well justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7(6):437–448

    CAS  PubMed  Google Scholar 

  2. Dirnagl U, Becker K, Meisel A (2009) Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 8(4):398–412

    CAS  PubMed  Google Scholar 

  3. Endres M, Engelhardt B, Koistinaho J, Lindvall O, Meairs S, Mohr JP et al (2008) Improving outcome after stroke: overcoming the translational roadblock. Cerebrovasc Dis (Basel, Switzerland) 25(3):268–278

    Google Scholar 

  4. Kapinya KJ, Prass K, Dirnagl U (2002) Isoflurane induced prolonged protection against cerebral ischemia in mice: a redox sensitive mechanism? NeuroReport 13(11):1431–1435

    CAS  PubMed  Google Scholar 

  5. Zheng S, Zuo Z (2004) Isoflurane preconditioning induces neuroprotection against ischemia via activation of P38 mitogen-activated protein kinases. Mol Pharmacol 65(5):1172–1180

    CAS  PubMed  Google Scholar 

  6. Kitano H, Kirsch JR, Hurn PD, Murphy SJ (2007) Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. J Cereb Blood Flow Metab 27(6):1108–1128

    CAS  PubMed  Google Scholar 

  7. Zhao P, Zuo Z (2004) Isoflurane preconditioning induces neuroprotection that is inducible nitric oxide synthase-dependent in neonatal rats. Anesthesiology 101(3):695–703

    CAS  PubMed  Google Scholar 

  8. McAuliffe JJ, Joseph B, Vorhees CV (2007) Isoflurane-delayed preconditioning reduces immediate mortality and improves striatal function in adult mice after neonatal hypoxia-ischemia. Anesthes Analges 104(5):1066–1077, tables of contents

    CAS  Google Scholar 

  9. Zhao P, Peng L, Li L, Xu X, Zuo Z (2007) Isoflurane preconditioning improves long-term neurologic outcome after hypoxic-ischemic brain injury in neonatal rats. Anesthesiology 107(6):963–970

    CAS  PubMed  Google Scholar 

  10. Ma D, Hossain M, Pettet GK, Luo Y, Lim T, Akimov S et al (2006) Xenon preconditioning reduces brain damage from neonatal asphyxia in rats. J Cereb Blood Flow Metab 26(2):199–208

    CAS  PubMed  Google Scholar 

  11. Luo Y, Ma D, Ieong E, Sanders RD, Yu B, Hossain M et al (2008) Xenon and sevoflurane protect against brain injury in a neonatal asphyxia model. Anesthesiology 109(5):782–789

    CAS  PubMed  Google Scholar 

  12. Payne RS, Akca O, Roewer N, Schurr A, Kehl F (2005) Sevoflurane-induced preconditioning protects against cerebral ischemic neuronal damage in rats. Brain Res 1034(1–2):147–152

    CAS  PubMed  Google Scholar 

  13. Codaccioni JL, Velly LJ, Moubarik C, Bruder NJ, Pisano PS, Guillet BA (2009) Sevoflurane preconditioning against focal cerebral ischemia: inhibition of apoptosis in the face of transient improvement of neurological outcome. Anesthesiology 110(6):1271–1278

    CAS  PubMed  Google Scholar 

  14. Ding Q, Wang Q, Deng J, Gu Q, Hu S, Li Y et al (2009) Sevoflurane preconditioning induces rapid ischemic tolerance against spinal cord ischemia/reperfusion through activation of extracellular signal-regulated kinase in rabbits. Anesthes Analges 109(4):1263–1272

    CAS  Google Scholar 

  15. Clarkson AN (2007) Anesthetic-mediated protection/preconditioning during cerebral ischemia. Life Sci 80(13):1157–1175

    CAS  PubMed  Google Scholar 

  16. Wang L, Traystman RJ, Murphy SJ (2008) Inhalational anesthetics as preconditioning agents in ischemic brain. Curr Opinion Pharmacol 8(1):104–110

    CAS  Google Scholar 

  17. Heurteaux C, Lauritzen I, Widmann C, Lazdunski M (1995) Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci USA 92(10):4666–4670

    CAS  PubMed  Google Scholar 

  18. Lenzser G, Kis B, Bari F, Busija DW (2005) Diazoxide preconditioning attenuates global cerebral ischemia-induced blood-brain barrier permeability. Brain Res 1051(1–2):72–80

    CAS  PubMed  Google Scholar 

  19. Watanabe M, Katsura K, Ohsawa I, Mizukoshi G, Takahashi K, Asoh S et al (2008) Involvement of mitoKATP channel in protective mechanisms of cerebral ischemic tolerance. Brain Res 1238:199–207

    CAS  PubMed  Google Scholar 

  20. Mayanagi K, Gaspar T, Katakam PV, Busija DW (2007) Systemic administration of diazoxide induces delayed preconditioning against transient focal cerebral ischemia in rats. Brain Res 1168:106–111

    CAS  PubMed  Google Scholar 

  21. Shake JG, Peck EA, Marban E, Gott VL, Johnston MV, Troncoso JC et al (2001) Pharmacologically induced preconditioning with diazoxide: a novel approach to brain protection. Annals Thorac Surg 72(6):1849–1854

    CAS  Google Scholar 

  22. Dirnagl U, Meisel A (2008) Endogenous neuroprotection: mitochondria as gateways to cerebral preconditioning? Neuropharmacology 55(3):334–344

    CAS  PubMed  Google Scholar 

  23. Selim M (2009) Deferoxamine mesylate: a new hope for intracerebral hemorrhage: from bench to clinical trials. Stroke 40(3 Suppl):S90–S91

    CAS  PubMed  Google Scholar 

  24. Bergeron M, Gidday JM, Yu AY, Semenza GL, Ferriero DM, Sharp FR (2000) Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol 48(3):285–296

    CAS  PubMed  Google Scholar 

  25. Jones NM, Kardashyan L, Callaway JK, Lee EM, Beart PM (2008) Long-term functional and protective actions of preconditioning with hypoxia, cobalt chloride, and desferrioxamine against hypoxic-ischemic injury in neonatal rats. Pediatr Res 63(6):620–624

    CAS  PubMed  Google Scholar 

  26. Prass K, Ruscher K, Karsch M, Isaev N, Megow D, Priller J et al (2002) Desferrioxamine induces delayed tolerance against cerebral ischemia in vivo and in vitro. J Cereb Blood Flow Metab 22(5):520–525

    CAS  PubMed  Google Scholar 

  27. Ratan RR, Siddiq A, Aminova L, Langley B, McConoughey S, Karpisheva K et al (2008) Small molecule activation of adaptive gene expression: tilorone or its analogs are novel potent activators of hypoxia inducible factor-1 that provide prophylaxis against stroke and spinal cord injury. Ann NY Acad Sci 1147:383–394

    Article  CAS  PubMed  Google Scholar 

  28. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3(3):187–197

    CAS  PubMed  Google Scholar 

  29. Aragones J, Fraisl P, Baes M, Carmeliet P (2009) Oxygen sensors at the crossroad of metabolism. Cell Metab 9(1):11–22

    CAS  PubMed  Google Scholar 

  30. Helton R, Cui J, Scheel JR, Ellison JA, Ames C, Gibson C et al (2005) Brain-specific knock-out of hypoxia-inducible factor-1alpha reduces rather than increases hypoxic-ischemic damage. J Neurosci 25(16):4099–4107

    CAS  PubMed  Google Scholar 

  31. Baranova O, Miranda LF, Pichiule P, Dragatsis I, Johnson RS, Chavez JC (2007) Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. J Neurosci 27(23):6320–6332

    CAS  PubMed  Google Scholar 

  32. Bernaudin M, Marti HH, Roussel S, Divoux D, Nouvelot A, MacKenzie ET et al (1999) A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 19(6):643–651

    CAS  PubMed  Google Scholar 

  33. Ruscher K, Freyer D, Karsch M, Isaev N, Megow D, Sawitzki B et al (2002) Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J Neurosci 22(23):10291–10301

    CAS  PubMed  Google Scholar 

  34. Prass K, Scharff A, Ruscher K, Lowl D, Muselmann C, Victorov I et al (2003) Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke 34(8):1981–1986

    CAS  PubMed  Google Scholar 

  35. Malhotra S, Savitz SI, Ocava L, Rosenbaum DM (2006) Ischemic preconditioning is mediated by erythropoietin through PI-3 kinase signaling in an animal model of transient ischemic attack. J Neurosci Res 83(1):19–27

    CAS  PubMed  Google Scholar 

  36. Gu GJ, Li YP, Peng ZY, Xu JJ, Kang ZM, Xu WG et al (2008) Mechanism of ischemic tolerance induced by hyperbaric oxygen preconditioning involves upregulation of hypoxia-inducible factor-1alpha and erythropoietin in rats. J Appl Physiol 104(4):1185–1191

    CAS  PubMed  Google Scholar 

  37. Chavez JC, Baranova O, Lin J, Pichiule P (2006) The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes. J Neurosci 26(37):9471–9481

    CAS  PubMed  Google Scholar 

  38. Rabie T, Marti HH (2008) Brain protection by erythropoietin: a manifold task. Physiology 23:263–274

    CAS  PubMed  Google Scholar 

  39. Minnerup J, Heidrich J, Rogalewski A, Schabitz WR, Wellmann J (2009) The efficacy of erythropoietin and its analogues in animal stroke models: a meta-analysis. Stroke 40(9):3113–3120

    CAS  PubMed  Google Scholar 

  40. Siren AL, Fasshauer T, Bartels C, Ehrenreich H (2009) Therapeutic potential of erythropoietin and its structural or functional variants in the nervous system. Neurotherapeutics 6(1):108–127

    CAS  PubMed  Google Scholar 

  41. Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M et al (2002) Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8(8):495–505

    CAS  PubMed  Google Scholar 

  42. Ehrenreich H, Weissenborn K, Prange H, Schneider D, Weimar C, Wartenberg K et al (2009) Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 40(12):e647–e656

    CAS  PubMed  Google Scholar 

  43. Huber R, Kasischke K, Ludolph AC, Riepe MW (1999) Increase of cellular hypoxic tolerance by erythromycin and other antibiotics. NeuroReport 10(7):1543–1546

    CAS  PubMed  Google Scholar 

  44. Brambrink AM, Koerner IP, Diehl K, Strobel G, Noppens R, Kempski O (2006) The antibiotic erythromycin induces tolerance against transient global cerebral ischemia in rats (pharmacologic preconditioning). Anesthesiology 104(6):1208–1215

    CAS  PubMed  Google Scholar 

  45. Koerner IP, Gatting M, Noppens R, Kempski O, Brambrink AM (2007) Induction of cerebral ischemic tolerance by erythromycin preconditioning reprograms the transcriptional response to ischemia and suppresses inflammation. Anesthesiology 106(3):538–547

    PubMed  Google Scholar 

  46. Chu K, Lee ST, Sinn DI, Ko SY, Kim EH, Kim JM et al (2007) Pharmacological induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregulation. Stroke 38(1):177–182

    CAS  PubMed  Google Scholar 

  47. Meisel C, Prass K, Braun J, Victorov I, Wolf T, Megow D et al (2004) Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke. Stroke 35(1):2–6

    CAS  PubMed  Google Scholar 

  48. Klehmet J, Harms H, Richter M, Prass K, Volk HD, Dirnagl U et al (2009) Stroke-induced immunodepression and post-stroke infections: lessons from the preventive antibacterial therapy in stroke trial. Neuroscience 158(3):1184–1193

    CAS  PubMed  Google Scholar 

  49. Lim YJ, Zheng S, Zuo Z (2004) Morphine preconditions Purkinje cells against cell death under in vitro simulated ischemia–reperfusion conditions. Anesthesiology 100(3):562–568

    CAS  PubMed  Google Scholar 

  50. Zhang J, Qian H, Zhao P, Hong SS, Xia Y (2006) Rapid hypoxia preconditioning protects cortical neurons from glutamate toxicity through delta-opioid receptor. Stroke 37(4):1094–1099

    PubMed  Google Scholar 

  51. Xiong LZ, Yang J, Wang Q, Lu ZH (2007) Involvement of delta- and mu-opioid receptors in the delayed cerebral ischemic tolerance induced by repeated electroacupuncture preconditioning in rats. Chin Med J 120(5):394–399

    CAS  PubMed  Google Scholar 

  52. Husain S, Potter DE, Crosson CE (2009) Opioid receptor-activation: retina protected from ischemic injury. Invest Ophthalmol Vis Sci 50(8):3853–3859

    PubMed  Google Scholar 

  53. Amarenco P, Bogousslavsky J, Callahan A 3rd, Goldstein LB, Hennerici M, Rudolph AE et al (2006) High-dose atorvastatin after stroke or transient ischemic attack. New Engl J Med 355(6):549–559

    CAS  PubMed  Google Scholar 

  54. Balduini W, Mazzoni E, Carloni S, De Simoni MG, Perego C, Sironi L et al (2003) Prophylactic but not delayed administration of simvastatin protects against long-lasting cognitive and morphological consequences of neonatal hypoxic-ischemic brain injury, reduces interleukin-1beta and tumor necrosis factor-alpha mRNA induction, and does not affect endothelial nitric oxide synthase expression. Stroke 34(8):2007–2012

    CAS  PubMed  Google Scholar 

  55. Domoki F, Kis B, Gaspar T, Snipes JA, Parks JS, Bari F et al (2009) Rosuvastatin induces delayed preconditioning against oxygen-glucose deprivation in cultured cortical neurons. Am J Physiol 296(1):C97–C105

    CAS  Google Scholar 

  56. Carloni S, Girelli S, Buonocore G, Longini M, Balduini W (2009) Simvastatin acutely reduces ischemic brain damage in the immature rat via Akt and CREB activation. Exp Neurol 220(1):82–89

    CAS  PubMed  Google Scholar 

  57. Mattson MP, Cheng A (2006) Neurohormetic phytochemicals: low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci 29(11):632–639

    CAS  PubMed  Google Scholar 

  58. Gao D, Zhang X, Jiang X, Peng Y, Huang W, Cheng G et al (2006) Resveratrol reduces the elevated level of MMP-9 induced by cerebral ischemia–reperfusion in mice. Life Sci 78(22):2564–2570

    CAS  PubMed  Google Scholar 

  59. Liu YG, Wang XD, Zhang XB (2007) Effects of resveratrol on inflammatory process induced by focal cerebral ischemia–reperfusion in rats. China Journal Chinese Materia Medica 32(17):1792–1795

    CAS  Google Scholar 

  60. Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 159(3):993–1002

    CAS  PubMed  Google Scholar 

  61. Wang Q, Sun AY, Simonyi A, Miller DK, Smith RE, Luchtefeld RG et al (2009) Oral administration of grape polyphenol extract ameliorates cerebral ischemia/reperfusion-induced neuronal damage and behavioral deficits in gerbils: comparison of pre- and post-ischemic administration. J Nut Biochem 20(5):369–377

    CAS  Google Scholar 

  62. Blondeau N, Widmann C, Lazdunski M, Heurteaux C (2002) Polyunsaturated fatty acids induce ischemic and epileptic tolerance. Neuroscience 109(2):231–241

    CAS  PubMed  Google Scholar 

  63. Wang Q, Sun AY, Simonyi A, Kalogeris TJ, Miller DK, Sun GY et al (2007) Ethanol preconditioning protects against ischemia/reperfusion-induced brain damage: role of NADPH oxidase-derived ROS. Free Radic Biol Med 43(7):1048–1060

    CAS  PubMed  Google Scholar 

  64. He W (2008) Qian Zhong M, Zhu L, Christopher Q, Du F, Yung WH, et al. Ginkgolides mimic the effects of hypoxic preconditioning to protect C6 cells against ischemic injury by up-regulation of hypoxia-inducible factor-1 alpha and erythropoietin. Intl J. Biochem Cell Biol 40(4):651–662

    CAS  Google Scholar 

  65. Collino M, Patel NS, Thiemermann C (2008) PPARs as new therapeutic targets for the treatment of cerebral ischemia/reperfusion injury. Therap Adv Cardiovasc Dis 2(3):179–197

    Google Scholar 

  66. Deplanque D, Gele P, Petrault O, Six I, Furman C, Bouly M et al (2003) Peroxisome proliferator-activated receptor-alpha activation as a mechanism of preventive neuroprotection induced by chronic fenofibrate treatment. J Neurosci 23(15):6264–6271

    CAS  PubMed  Google Scholar 

  67. Ouk T, Laprais M, Bastide M, Mostafa K, Gautier S, Bordet R (2009) Withdrawal of fenofibrate treatment partially abrogates preventive neuroprotection in stroke via loss of vascular protection. Vasc Pharmacol 51(5–6):323–330

    CAS  Google Scholar 

  68. Villacorta L, Schopfer FJ, Zhang J, Freeman BA, Chen YE (2009) PPARgamma and its ligands: therapeutic implications in cardiovascular disease. Clin Sci (Lond) 116(3):205–218

    CAS  Google Scholar 

  69. Raval AP, Bramlett H, Perez-Pinzon MA (2006) Estrogen preconditioning protects the hippocampal CA1 against ischemia. Neuroscience 141(4):1721–1730

    CAS  PubMed  Google Scholar 

  70. Raval AP, Saul I, Dave KR, DeFazio RA, Perez-Pinzon MA, Bramlett H (2009) Pretreatment with a single estradiol-17beta bolus activates cyclic-AMP response element binding protein and protects CA1 neurons against global cerebral ischemia. Neuroscience 160(2):307–318

    CAS  PubMed  Google Scholar 

  71. Wacker BK, Park TS, Gidday JM (2009) Hypoxic preconditioning-induced cerebral ischemic tolerance: role of microvascular sphingosine kinase 2. Stroke 40(10):3342–3348

    CAS  PubMed  Google Scholar 

  72. Riepe MW, Kasischke K, Raupach A (1997) Acetylsalicylic acid increases tolerance against hypoxic and chemical hypoxia. Stroke 28(10):2006–2011

    CAS  PubMed  Google Scholar 

  73. Kasischke K, Huber R, Li H, Timmler M, Riepe MW (1999) Primary hypoxic tolerance and chemical preconditioning during estrus cycle in mice. Stroke 30(6):1256–1262

    CAS  PubMed  Google Scholar 

  74. Endres M, Gertz K, Lindauer U, Katchanov J, Schultze J, Schrock H et al (2003) Mechanisms of stroke protection by physical activity. Ann Neurol 54(5):582–590

    PubMed  Google Scholar 

  75. Ding YH, Young CN, Luan X, Li J, Rafols JA, Clark JC et al (2005) Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion. Acta Neuropathol (Berl) 109(3):237–246

    CAS  Google Scholar 

  76. Guo M, Lin V, Davis W, Huang T, Carranza A, Sprague S et al (2008) Preischemic induction of TNF-alpha by physical exercise reduces blood-brain barrier dysfunction in stroke. J Cereb Blood Flow Metab 28(8):1422–1430

    CAS  PubMed  Google Scholar 

  77. Krarup LH, Truelsen T, Gluud C, Andersen G, Zeng X, Korv J et al (2008) Prestroke physical activity is associated with severity and long-term outcome from first-ever stroke. Neurology 71(17):1313–1318

    PubMed  Google Scholar 

  78. Xiong L, Lu Z, Hou L, Zheng H, Zhu Z, Wang Q et al (2003) Pretreatment with repeated electroacupuncture attenuates transient focal cerebral ischemic injury in rats. Chin Med J 116(1):108–111

    PubMed  Google Scholar 

  79. Wang Q, Xiong L, Chen S, Liu Y, Zhu X (2005) Rapid tolerance to focal cerebral ischemia in rats is induced by preconditioning with electroacupuncture: window of protection and the role of adenosine. Neurosci Lett 381(1-2):158–162

    CAS  PubMed  Google Scholar 

  80. Ogiue-Ikeda M, Kawato S, Ueno S (2005) Acquisition of ischemic tolerance by repetitive transcranial magnetic stimulation in the rat hippocampus. Brain Res 1037(1–2):7–11

    CAS  PubMed  Google Scholar 

  81. Yu ZF, Mattson MP (1999) Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: evidence for a preconditioning mechanism. J Neurosci Res 57(6):830–839

    CAS  PubMed  Google Scholar 

  82. Jiang Y, Wu J, Hua Y, Keep RF, Xiang J, Hoff JT et al (2002) Thrombin-receptor activation and thrombin-induced brain tolerance. J Cereb Blood Flow Metab 22(4):404–410

    CAS  PubMed  Google Scholar 

  83. Granziera C, Thevenet J, Price M, Wiegler K, Magistretti PJ, Badaut J et al (2007) Thrombin-induced ischemic tolerance is prevented by inhibiting c-jun N-terminal kinase. Brain Res 1148:217–225

    CAS  PubMed  Google Scholar 

  84. Blondeau N, Plamondon H, Richelme C, Heurteaux C, Lazdunski M (2000) K(ATP) channel openers, adenosine agonists and epileptic preconditioning are stress signals inducing hippocampal neuroprotection. Neuroscience 100(3):465–474

    CAS  PubMed  Google Scholar 

  85. Nawashiro H, Tasaki K, Ruetzler CA, Hallenbeck JM (1997) TNF-alpha pretreatment induces protective effects against focal cerebral ischemia in mice. J Cereb Blood Flow Metab 17(5):483–490

    CAS  PubMed  Google Scholar 

  86. Ping A, Chun ZX, Xue XY (2005) Bradykinin preconditioning induces protective effects against focal cerebral ischemia in rats. Brain Res 1059(2):105–112

    PubMed  Google Scholar 

  87. Ohtsuki T, Matsumoto M, Kuwabara K, Kitagawa K, Suzuki K, Taniguchi N et al (1992) Influence of oxidative stress on induced tolerance to ischemia in gerbil hippocampal neurons. Brain Res 599(2):246–252

    CAS  PubMed  Google Scholar 

  88. Tasaki K, Ruetzler CA, Ohtsuki T, Martin D, Nawashiro H, Hallenbeck JM (1997) Lipopolysaccharide pre-treatment induces resistance against subsequent focal cerebral ischemic damage in spontaneously hypertensive rats. Brain Res 748(1–2):267–270

    CAS  PubMed  Google Scholar 

  89. Bordet R, Deplanque D, Maboudou P, Puisieux F, Pu Q, Robin E et al (2000) Increase in endogenous brain superoxide dismutase as a potential mechanism of lipopolysaccharide-induced brain ischemic tolerance. J Cereb Blood Flow Metab 20(8):1190–1196

    CAS  PubMed  Google Scholar 

  90. Bastide M, Gele P, Petrault O, Pu Q, Caliez A, Robin E et al (2003) Delayed cerebrovascular protective effect of lipopolysaccharide in parallel to brain ischemic tolerance. J Cereb Blood Flow Metab 23(4):399–405

    CAS  PubMed  Google Scholar 

  91. Rosenzweig HL, Minami M, Lessov NS, Coste SC, Stevens SL, Henshall DC et al (2007) Endotoxin preconditioning protects against the cytotoxic effects of TNFalpha after stroke: a novel role for TNFalpha in LPS-ischemic tolerance. J Cereb Blood Flow Metab 27(10):1663–1674

    CAS  PubMed  Google Scholar 

  92. Eklind S, Mallard C, Arvidsson P, Hagberg H (2005) Lipopolysaccharide induces both a primary and a secondary phase of sensitization in the developing rat brain. Pediatr Res 58(1):112–116

    CAS  PubMed  Google Scholar 

  93. Hickey EJ, You X, Kaimaktchiev V, Stenzel-Poore M, Ungerleider RM (2007) Lipopolysaccharide preconditioning induces robust protection against brain injury resulting from deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg 133(6):1588–1596

    PubMed  Google Scholar 

  94. Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP (2009) Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience 158(3):1007–1020

    CAS  PubMed  Google Scholar 

  95. Riepe MW, Esclaire F, Kasischke K, Schreiber S, Nakase H, Kempski O et al (1997) Increased hypoxic tolerance by chemical inhibition of oxidative phosphorylation: “chemical preconditioning”. J Cereb Blood Flow Metab 17(3):257–264

    CAS  PubMed  Google Scholar 

  96. Horiguchi T, Kis B, Rajapakse N, Shimizu K, Busija DW (2003) Opening of mitochondrial ATP-sensitive potassium channels is a trigger of 3-nitropropionic acid-induced tolerance to transient focal cerebral ischemia in rats. Stroke 34(4):1015–1020

    CAS  PubMed  Google Scholar 

  97. Pera J, Zawadzka M, Kaminska B, Szczudlik A (2004) Influence of chemical and ischemic preconditioning on cytokine expression after focal brain ischemia. J Neurosci Res 78(1):132–140

    CAS  PubMed  Google Scholar 

  98. Wiegand F, Liao W, Busch C, Castell S, Knapp F, Lindauer U et al (1999) Respiratory chain inhibition induces tolerance to focal cerebral ischemia. J Cereb Blood Flow Metab 19(11):1229–1237

    CAS  PubMed  Google Scholar 

  99. Hoshi A, Nakahara T, Ogata M, Yamamoto T (2005) The critical threshold of 3-nitropropionic acid-induced ischemic tolerance in the rat. Brain Res 1050(1–2):33–39

    CAS  PubMed  Google Scholar 

  100. Sugino T, Nozaki K, Hashimoto N (2000) Activation of mitogen-activated protein kinases in gerbil hippocampus with ischemic tolerance induced by 3-nitropropionic acid. Neurosci Lett 278(1–2):101–104

    CAS  PubMed  Google Scholar 

  101. Kato K, Shimazaki K, Kamiya T, Amemiya S, Inaba T, Oguro K et al (2005) Differential effects of sublethal ischemia and chemical preconditioning with 3-nitropropionic acid on protein expression in gerbil hippocampus. Life Sci 77(23):2867–2878

    CAS  PubMed  Google Scholar 

  102. Garnier P, Bertrand N, Demougeot C, Prigent-Tessier A, Marie C, Beley A (2002) Chemical preconditioning with 3-nitropropionic acid: lack of induction of neuronal tolerance in gerbil hippocampus subjected to transient forebrain ischemia. Brain Res Bull 58(1):33–39

    CAS  PubMed  Google Scholar 

  103. Liu J, Ginis I, Spatz M, Hallenbeck JM (2000) Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-alpha and ceramide. Am J Physiol 278(1):C144–C153

    CAS  Google Scholar 

  104. Pradillo JM, Romera C, Hurtado O, Cardenas A, Moro MA, Leza JC et al (2005) TNFR1 upregulation mediates tolerance after brain ischemic preconditioning. J Cereb Blood Flow Metab 25(2):193–203

    CAS  PubMed  Google Scholar 

  105. Dave KR, Saul I, Prado R, Busto R, Perez-Pinzon MA (2006) Remote organ ischemic preconditioning protect brain from ischemic damage following asphyxial cardiac arrest. Neurosci Lett 404(1–2):170–175

    CAS  PubMed  Google Scholar 

  106. Ren C, Gao X, Steinberg GK, Zhao H (2008) Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning. Neuroscience 151(4):1099–1103

    CAS  PubMed  Google Scholar 

  107. Kitano H, Young JM, Cheng J, Wang L, Hurn PD, Murphy SJ (2007) Gender-specific response to isoflurane preconditioning in focal cerebral ischemia. J Cereb Blood Flow Metab 27(7):1377–1386

    CAS  PubMed  Google Scholar 

  108. He Z, Crook JE, Meschia JF, Brott TG, Dickson DW, McKinney M (2005) Aging blunts ischemic-preconditioning-induced neuroprotection following transient global ischemia in rats. Curr Neurovasc Res 2(5):365–374

    CAS  PubMed  Google Scholar 

  109. Methy D, Bertrand N, Prigent-Tessier A, Mossiat C, Stanimirovic D, Beley A et al (2008) Beneficial effect of dipyridyl, a liposoluble iron chelator against focal cerebral ischemia: in vivo and in vitro evidence of protection of cerebral endothelial cells. Brain Res 1193:136–142

    CAS  PubMed  Google Scholar 

  110. Marsh BJ, Stevens SL, Hunter B, Stenzel-Poore MP (2009) Inflammation and the emerging role of the toll-like receptor system in acute brain ischemia. Stroke 40(3 Suppl):S34–S37

    CAS  PubMed  Google Scholar 

  111. Stevens SL, Ciesielski TM, Marsh BJ, Yang T, Homen DS, Boule JL et al (2008) Toll-like receptor 9: a new target of ischemic preconditioning in the brain. J Cereb Blood Flow Metab 28(5):1040–1047

    CAS  PubMed  Google Scholar 

  112. Toyoda T, Kassell NF, Lee KS (2000) Induction of tolerance against ischemia/reperfusion injury in the rat brain by preconditioning with the endotoxin analog diphosphoryl lipid A. J Neurosurg 92(3):435–441

    CAS  PubMed  Google Scholar 

  113. Gaspar T, Snipes JA, Busija AR, Kis B, Domoki F, Bari F et al (2008) ROS-independent preconditioning in neurons via activation of mitoK(ATP) channels by BMS-191095. J Cereb Blood Flow Metab 28(6):1090–1103

    CAS  PubMed  Google Scholar 

  114. Gaspar T, Kis B, Snipes JA, Lenzser G, Mayanagi K, Bari F et al (2007) Neuronal preconditioning with the antianginal drug, bepridil. J Neurochem 102(3):595–608

    CAS  PubMed  Google Scholar 

  115. Zhu HL, Luo WQ, Wang H (2008) Iptakalim protects against hypoxic brain injury through multiple pathways associated with ATP-sensitive potassium channels. Neuroscience 157(4):884–894

    CAS  PubMed  Google Scholar 

  116. Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI et al (2009) Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 40(6):2244–2250

    PubMed  Google Scholar 

  117. Meschia JF (2009) Pharmacogenetics and Stroke. Stroke 40(11):3641–3645

    PubMed  Google Scholar 

Download references

Acknowledgments

A note of appreciation to Drs. Brad K. Wacker and Ann M. Stowe for the critical review of this manuscript and helpful discussion. The author regrets space limitations that prevented the citation of many noteworthy and relevant studies. Support for the author’s laboratory from NIH grants RO1 HL79278, PO1 NS32636, and the Spastic Paralysis Research Foundation of the Illinois-Eastern Iowa District of Kiwanis International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Gidday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gidday, J.M. Pharmacologic Preconditioning: Translating the Promise. Transl. Stroke Res. 1, 19–30 (2010). https://doi.org/10.1007/s12975-010-0011-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-010-0011-y

Keywords

Navigation