Skip to main content
Log in

Contemporary issues and lifetime management in patients underwent transcatheter aortic valve replacement

  • Invited Review Article
  • Published:
Cardiovascular Intervention and Therapeutics Aims and scope Submit manuscript

Abstract

Latest clinical trials have indicated favorable outcomes following transcatheter aortic valve replacement (TAVR) in low surgical risk patients with severe aortic stenosis. However, there are unanswered questions particularly in younger patients with longer life expectancy. While current evidence are limited to short duration of clinical follow-up, there are certain factors which may impair patients clinical outcomes and quality-of-life at long-term. Contemporary issues in the current TAVR era include prosthesis-patient mismatch, heart failure hospitalization, subclinical thrombosis, future coronary access, and valve durability. In this review, the authors review available evidence and discuss each remaining issues and theoretical treatment strategies in lifetime management of TAVR patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were created or analyzed in the current study.

References

  1. Lancellotti P, Pibarot P, Chambers J, Edvardsen T, Delgado V, Dulgheru R, et al. Recommendations for the imaging assessment of prosthetic heart valves: a report from the European Association of Cardiovascular Imaging endorsed by the Chinese Society of Echocardiography, the Inter-American Society of Echocardiography, and the Brazilian Department of Cardiovascular Imaging†. Eur Heart J Cardiovas Imaging. 2016;17(6):589–90.

    Article  Google Scholar 

  2. He S, Fang Z. Incidence, predictors, and outcome of prosthesis-patient mismatch after transcatheter aortic valve replacement: a meta-analysis. Medicine. 2020;99(24): e20717.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Miyasaka M, Tada N, Taguri M, Kato S, Enta Y, Otomo T, et al. Incidence, predictors, and clinical impact of Prosthesis-Patient Mismatch Following Transcatheter Aortic Valve Replacement in Asian Patients: The OCEAN-TAVI Registry. JACC Cardiovasc Interv. 2018;11(8):771–80.

    Article  PubMed  Google Scholar 

  4. Leone PP, Regazzoli D, Pagnesi M, Sanz-Sanchez J, Chiarito M, Cannata F, et al. Predictors and Clinical Impact of Prosthesis-Patient Mismatch After Self-Expandable TAVR in Small Annuli. JACC Cardiovasc Interv. 2021;14(11):1218–28.

    Article  PubMed  Google Scholar 

  5. He S, Fang Z. Incidence, predictors, and outcome of prosthesis-patient mismatch after transcatheter aortic valve replacement: A meta-analysis. Medicine (Baltimore). 2020;99(24): e20717.

    Article  PubMed  Google Scholar 

  6. Mauri V, Kim WK, Abumayyaleh M, Walther T, Moellmann H, Schaefer U, et al. Short-term outcome and hemodynamic performance of next-generation self-expanding versus balloon-expandable transcatheter aortic valves in patients with small aortic annulus: a multicenter propensity-matched comparison. Circ Cardiovasc Interv. 2017;10(10): e005013.

    Article  PubMed  Google Scholar 

  7. Abdel-Wahab M, Landt M, Neumann FJ, Massberg S, Frerker C, Kurz T, et al. 5-Year Outcomes After TAVR With Balloon-Expandable Versus Self-Expanding Valves: Results From the CHOICE Randomized Clinical Trial. JACC Cardiovasc Interv. 2020;13(9):1071–82.

    Article  PubMed  Google Scholar 

  8. Kanso M, Kibler M, Hess S, Rischner J, Plastaras P, Kindo M, et al. Effective Orifice Area of Balloon-Expandable and Self-Expandable Transcatheter Aortic Valve Prostheses: An Echo Doppler Comparative Study. J Clin Med. 2021;7:10.

    Google Scholar 

  9. Ewe SH, Muratori M, Delgado V, Pepi M, Tamborini G, Fusini L, et al. Hemodynamic and Clinical Impact of Prosthesis-Patient Mismatch After Transcatheter Aortic Valve Implantation. J Am College Cardiol. 2011;58(18):1910–8.

    Article  Google Scholar 

  10. Zorn GL, Little SH, Tadros P, Deeb GM, Gleason TG, Heiser J, et al. Prosthesis–patient mismatch in high-risk patients with severe aortic stenosis: A randomized trial of a self-expanding prosthesis. J Thoracic Cardiovasc Surg. 2016;151(4):1014-23.e3.

    Article  Google Scholar 

  11. Miyamoto J, Ohno Y, Kamioka N, Ikari Y, Otsuka T, Tada N, et al. Impact of Periprocedural Pulmonary Hypertension on Outcomes After Transcatheter Aortic Valve Replacement. J Am Coll Cardiol. 2022;80(17):1601–13.

    Article  PubMed  Google Scholar 

  12. Miyasaka M. Prosthesis-patient mismatch after transcatheter aortic valve implantation. Cardiovasc Interv Ther. 2022;37(4):615–25.

    Article  PubMed  Google Scholar 

  13. Poulin F, Yingchoncharoen T, Wilson WM, Horlick EM, Généreux P, Tuzcu EM, et al. Impact of prosthesis-patient mismatch on left ventricular myocardial mechanics after transcatheter aortic valve replacement. J Am Heart Assoc. 2016;5(2):e002866.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liao YB, Li YJ, Jun-Li L, Zhao ZG, Wei X, Tsauo JY, et al. Incidence, predictors and outcome of prosthesis-patient mismatch after transcatheter aortic valve replacement: a systematic review and meta-analysis. Sci Rep. 2017;7(1):15014.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Comella A, Michail M, Chan J, Cameron JD, Gooley R, Mathur A, et al. Patients with aortic stenosis exhibit early improved endothelial function following transcatheter aortic valve replacement: the eFAST study. Int J Cardiol. 2021;1(332):143–7.

    Article  Google Scholar 

  16. Marchandot B, Kibler M, Charles AL, Trinh A, Petit Eisenmann H, Zeyons F, et al. Does Transcatheter Aortic Valve Replacement Modulate the Kinetic of Superoxide Anion Generation? Antioxid Redox Signal. 2019;31(5):420–6.

    Article  CAS  PubMed  Google Scholar 

  17. Horn P, Stern D, Veulemans V, Heiss C, Zeus T, Merx MW, et al. Improved endothelial function and decreased levels of endothelium-derived microparticles after transcatheter aortic valve implantation. EuroIntervention. 2015;10(12):1456–63.

    Article  PubMed  Google Scholar 

  18. Abbas M, Jesel L, Auger C, Amoura L, Messas N, Manin G, et al. Endothelial Microparticles From Acute Coronary Syndrome Patients Induce Premature Coronary Artery Endothelial Cell Aging and Thrombogenicity: Role of the Ang II/AT1 Receptor/NADPH Oxidase-Mediated Activation of MAPKs and PI3-Kinase Pathways. Circulation. 2017;135(3):280–96.

    Article  CAS  PubMed  Google Scholar 

  19. Goel SS, Kleiman NS, Zoghbi WA, Reardon MJ, Kapadia SR. Renin-Angiotensin System Blockade in Aortic Stenosis: Implications Before and After Aortic Valve Replacement. J Am Heart Assoc. 2020;9(18): e016911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heger J, Trimaille A, Kibler M, Marchandot B, Peillex M, Carmona A, et al. Electrocardiographic Strain Pattern Is a Major Determinant of Rehospitalization for Heart Failure After Transcatheter Aortic Valve Replacement. J Am Heart Assoc. 2021;10(3): e014481.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Auffret V, Bakhti A, Leurent G, Bedossa M, Tomasi J, Belhaj Soulami R, et al. Determinants and Impact of Heart Failure Readmission Following Transcatheter Aortic Valve Replacement. Circ Cardiovasc Interv. 2020;13(7): e008959.

    Article  PubMed  Google Scholar 

  22. Tarantini G, Mojoli M, Urena M, Vahanian A. Atrial fibrillation in patients undergoing transcatheter aortic valve implantation: epidemiology, timing, predictors, and outcome. Eur Heart J. 2017;38(17):1285–93.

    CAS  PubMed  Google Scholar 

  23. Vollenbroich R, Stortecky S, Praz F, Lanz J, Franzone A, Zuk K, et al. The impact of functional vs degenerative mitral regurgitation on clinical outcomes among patients undergoing transcatheter aortic valve implantation. Am Heart J. 2017;184:71–80.

    Article  PubMed  Google Scholar 

  24. Vahanian A, Beyersdorf F, Praz F, Milojevic M, Baldus S, Bauersachs J, et al. ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2022;43(7):561–632.

    Article  PubMed  Google Scholar 

  25. Cremer PC, Zhang Y, Alu M, Rodriguez LL, Lindman BR, Zajarias A, et al. The incidence and prognostic implications of worsening right ventricular function after surgical or transcatheter aortic valve replacement: insights from PARTNER IIA. Eur Heart J. 2018;39(28):2659–67.

    Article  CAS  PubMed  Google Scholar 

  26. Tomii D, Okuno T, Praz F, Heg D, Wild MG, Lanz J, et al. Potential Candidates for Transcatheter Tricuspid Valve Intervention After Transcatheter Aortic Valve Replacement: Predictors and Prognosis. JACC Cardiovasc Interv. 2021;14(20):2246–56.

    Article  PubMed  Google Scholar 

  27. D’Ascenzo F, Salizzoni S, Saglietto A, Cortese M, Latib A, Franzone A, et al. Incidence, predictors and cerebrovascular consequences of leaflet thrombosis after transcatheter aortic valve implantation: a systematic review and meta-analysis. Eur J Cardio-Thoracic Surg. 2019;56(3):488–94.

    Article  Google Scholar 

  28. Chakravarty T, Sondergaard L, Friedman J, De Backer O, Berman D, Kofoed KF, et al. Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study. Lancet (London, England). 2017;389(10087):2383–92.

    Article  PubMed  Google Scholar 

  29. Bogyi M, Schernthaner RE, Loewe C, Gager GM, Dizdarevic AM, Kronberger C, et al. Subclinical Leaflet Thrombosis After Transcatheter Aortic Valve Replacement: A Meta-Analysis. JACC Cardiovasc Interv. 2021;14(24):2643–56.

    Article  PubMed  Google Scholar 

  30. Cahill TJ, Kirtane AJ, Leon M, Kodali SK. Subclinical Leaflet Thrombosis and Anticoagulation After Transcatheter Aortic Valve Replacement: A Review. JAMA Cardiol. 2022;7(8):866–72.

    Article  PubMed  Google Scholar 

  31. Blanke P, Leipsic JA, Popma JJ, Yakubov SJ, Deeb GM, Gada H, et al. Bioprosthetic Aortic Valve Leaflet Thickening in the Evolut Low Risk Sub-Study. J Am Coll Cardiol. 2020;75(19):2430–42.

    Article  CAS  PubMed  Google Scholar 

  32. Makkar RR, Blanke P, Leipsic J, Thourani V, Chakravarty T, Brown D, et al. Subclinical Leaflet Thrombosis in Transcatheter and Surgical Bioprosthetic Valves: PARTNER 3 Cardiac Computed Tomography Substudy. J Am Coll Cardiol. 2020;75(24):3003–15.

    Article  PubMed  Google Scholar 

  33. Sellers SL, Turner CT, Sathananthan J, Cartlidge TRG, Sin F, Bouchareb R, et al. Transcatheter Aortic Heart Valves: Histological Analysis Providing Insight to Leaflet Thickening and Structural Valve Degeneration. JACC Cardiovasc Imaging. 2019;12(1):135–45.

    Article  PubMed  Google Scholar 

  34. Hatoum H, Dollery J, Lilly SM, Crestanello JA, Dasi LP. Implantation Depth and Rotational Orientation Effect on Valve-in-Valve Hemodynamics and Sinus Flow. Ann Thorac Surg. 2018;106(1):70–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Madukauwa-David ID, Sadri V, Kamioka N, Midha PA, Raghav V, Oshinski JN, et al. Transcatheter aortic valve deployment influences neo-sinus thrombosis risk: An in vitro flow study. Catheterization Cardiovasc Interventions. 2020;95(5):1009–16.

    Article  Google Scholar 

  36. Midha PA, Raghav V, Sharma R, Condado JF, Okafor IU, Rami T, et al. The Fluid Mechanics of Transcatheter Heart Valve Leaflet Thrombosis in the Neosinus. Circulation. 2017;136(17):1598–609.

    Article  PubMed  Google Scholar 

  37. Fuchs A, De Backer O, Brooks M, de Knegt MC, Bieliauskas G, Yamamoto M, et al. Subclinical leaflet thickening and stent frame geometry in self-expanding transcatheter heart valves. EuroIntervention. 2017;13(9):e1067–75.

    Article  PubMed  Google Scholar 

  38. Hmadeh S, Trimaille A, Matsushita K, Zobairi F, Sato C, Kindo M, et al. Enrichment in procoagulant microparticles in calcified human aortic valve—role in valvular endothelium alterations and enhanced thrombogenicity. Eur Heart J. 2022;43(Supplement_2):ehac544.1519.

    Article  Google Scholar 

  39. Trimaille A, Hmadeh S, Matsushita K, Marchandot B, Kauffenstein G, Morel O. Aortic stenosis and the hemostatic system. Cardiovas Res. 2022;cvac192. https://doi.org/10.1093/cvr/cvac192.

  40. Fukui M, Bapat VN, Garcia S, Dworak MW, Hashimoto G, Sato H, et al. Deformation of Transcatheter Aortic Valve Prostheses: Implications for Hypoattenuating Leaflet Thickening and Clinical Outcomes. Circulation. 2022;146(6):480–93.

    Article  CAS  PubMed  Google Scholar 

  41. Hein M, Schoechlin S, Schulz U, Minners J, Breitbart P, Lehane C, et al. Long-Term Follow-Up of Hypoattenuated Leaflet Thickening After Transcatheter Aortic Valve Replacement. JACC Cardiovasc Interv. 2022;15(11):1113–22.

    Article  PubMed  Google Scholar 

  42. Carmona A, Marchandot B, Severac F, Kibler M, Trimaille A, Heger J, et al. Impact of Incomplete Coronary Revascularization on Late Ischemic and Bleeding Events after Transcatheter Aortic Valve Replacement. J Clin Med. 2020;9(7):2267.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Okuno T, Demirel C, Tomii D, Heg D, Häner J, Siontis GCM, et al. Long-term risk of unplanned percutaneous coronary intervention after transcatheter aortic valve replacement. EuroIntervention. 2022;18(10):797–803.

    Article  PubMed  Google Scholar 

  44. Nai Fovino L, Scotti A, Massussi M, Fabris T, Cardaioli F, Rodinò G, et al. Incidence and feasibility of coronary access after transcatheter aortic valve replacement. Catheterization Cardiovasc Interventions. 2020;96(5):E535–41.

    Article  Google Scholar 

  45. Tarantini G, Nai Fovino L, Le Prince P, Darremont O, Urena M, Bartorelli AL, et al. Coronary Access and Percutaneous Coronary Intervention Up to 3 Years After Transcatheter Aortic Valve Implantation With a Balloon-Expandable Valve. Circ Cardiovasc Interv. 2020;13(7): e008972.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mentias A, Desai MY, Saad M, Horwitz PA, Rossen JD, Panaich S, et al. Incidence and Outcomes of Acute Coronary Syndrome After Transcatheter Aortic Valve Replacement. JACC Cardiovasc Interv. 2020;13(8):938–50.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Faroux L, Munoz-Garcia E, Serra V, Alperi A, Nombela-Franco L, Fischer Q, et al. Acute Coronary Syndrome Following Transcatheter Aortic Valve Replacement. Circ Cardiovasc Interv. 2020;13(2): e008620.

    Article  PubMed  Google Scholar 

  48. Barbanti M, Costa G, Picci A, Criscione E, Reddavid C, Valvo R, et al. Coronary Cannulation After Transcatheter Aortic Valve Replacement: The RE-ACCESS Study. JACC Cardiovasc Interv. 2020;13(21):2542–55.

    Article  PubMed  Google Scholar 

  49. Ochiai T, Chakravarty T, Yoon SH, Kaewkes D, Flint N, Patel V, et al. Coronary access after TAVR. JACC Cardiovasc Interv. 2020;13(6):693–705.

    Article  PubMed  Google Scholar 

  50. Tarantini G, Nai Fovino L, Scotti A, Massussi M, Cardaioli F, Rodinò G, et al. Coronary Access After Transcatheter Aortic Valve Replacement With Commissural Alignment: The ALIGN-ACCESS Study. Circ Cardiovasc Interv. 2022;15(2): e011045.

    Article  CAS  PubMed  Google Scholar 

  51. Tang GHL, Zaid S, Fuchs A, Yamabe T, Yazdchi F, Gupta E, et al. Alignment of Transcatheter Aortic-Valve Neo-Commissures (ALIGN TAVR): Impact on Final Valve Orientation and Coronary Artery Overlap. JACC Cardiovasc Interv. 2020;13(9):1030–42.

    Article  PubMed  Google Scholar 

  52. Matsushita K, Kanso M, Ohana M, Marchandot B, Kibler M, Heger J, et al. Periprocedural Predictors of New-Onset Conduction Abnormalities After Transcatheter Aortic Valve Replacement. Circ J. 2020;84(10):1875–83.

    Article  CAS  PubMed  Google Scholar 

  53. Russo G, Tang GHL, Sangiorgi G, Pedicino D, Enriquez-Sarano M, Maisano F, et al. Lifetime Management of Aortic Stenosis: Transcatheter Versus Surgical Treatment for Young and Low-Risk Patients. Circ Cardiovasc Interv. 2022;15(11):915–27.

    Article  PubMed  Google Scholar 

  54. Yerasi C, Rogers T, Forrestal BJ, Case BC, Khan JM, Ben-Dor I, et al. Transcatheter Versus Surgical Aortic Valve Replacement in Young, Low-Risk Patients With Severe Aortic Stenosis. JACC Cardiovasc Interv. 2021;14(11):1169–80.

    Article  PubMed  Google Scholar 

  55. Rodriguez-Gabella T, Voisine P, Puri R, Pibarot P, Rodés-Cabau J. Aortic Bioprosthetic Valve Durability: Incidence, Mechanisms, Predictors, and Management of Surgical and Transcatheter Valve Degeneration. J Am Coll Cardiol. 2017;70(8):1013–28.

    Article  PubMed  Google Scholar 

  56. Pibarot P, Herrmann HC, Wu C, Hahn RT, Otto CM, Abbas AE, et al. Standardized Definitions for Bioprosthetic Valve Dysfunction Following Aortic or Mitral Valve Replacement: JACC State-of-the-Art Review. J Am Coll Cardiol. 2022;80(5):545–61.

    Article  PubMed  Google Scholar 

  57. Søndergaard L, Ihlemann N, Capodanno D, Jørgensen TH, Nissen H, Kjeldsen BJ, et al. Durability of Transcatheter and Surgical Bioprosthetic Aortic Valves in Patients at Lower Surgical Risk. J Am Coll Cardiol. 2019;73(5):546–53.

    Article  PubMed  Google Scholar 

  58. Généreux P, Piazza N, Alu MC, Nazif T, Hahn RT, Pibarot P, et al. Valve Academic Research Consortium 3: updated endpoint definitions for aortic valve clinical research. Eur Heart J. 2021;42(19):1825–57.

    Article  PubMed  Google Scholar 

  59. Salaun E, Mahjoub H, Girerd N, Dagenais F, Voisine P, Mohammadi S, et al. Rate, Timing, Correlates, and Outcomes of Hemodynamic Valve Deterioration After Bioprosthetic Surgical Aortic Valve Replacement. Circulation. 2018;138(10):971–85.

    Article  PubMed  Google Scholar 

  60. Bourguignon T, Bouquiaux-Stablo AL, Candolfi P, Mirza A, Loardi C, May MA, et al. Very long-term outcomes of the Carpentier-Edwards Perimount valve in aortic position. Ann Thorac Surg. 2015;99(3):831–7.

    Article  PubMed  Google Scholar 

  61. Fatima B, Mohananey D, Khan FW, Jobanputra Y, Tummala R, Banerjee K, et al. Durability Data for Bioprosthetic Surgical Aortic Valve: A Systematic Review. JAMA Cardiol. 2019;4(1):71–80.

    Article  PubMed  Google Scholar 

  62. Gleason TG, Reardon MJ, Popma JJ, Deeb GM, Yakubov SJ, Lee JS, et al. 5-Year Outcomes of Self-Expanding Transcatheter Versus Surgical Aortic Valve Replacement in High-Risk Patients. J Am College Cardiol. 2018;72(22):2687–96.

    Article  Google Scholar 

  63. Mack MJ, Leon MB, Smith CR, Miller DC, Moses JW, Tuzcu EM, et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet (London, England). 2015;385(9986):2477–84.

    Article  PubMed  Google Scholar 

  64. Pibarot P, Ternacle J, Jaber WA, Salaun E, Dahou A, Asch FM, et al. Structural Deterioration of Transcatheter Versus Surgical Aortic Valve Bioprostheses in the PARTNER-2 Trial. J Am Coll Cardiol. 2020;76(16):1830–43.

    Article  PubMed  Google Scholar 

  65. Trimaille A, Hmadeh S, Morel O. Letter by Trimaille et al Regarding Article, “Native Aortic Valve Disease Progression and Bioprosthetic Valve Degeneration in Patients With Transcatheter Aortic Valve Implantation.” Circulation. 2022;145(15):e807–8.

    Article  PubMed  Google Scholar 

  66. Kwiecinski J, Tzolos E, Cartlidge TRG, Fletcher A, Doris MK, Bing R, et al. Native Aortic Valve Disease Progression and Bioprosthetic Valve Degeneration in Patients With Transcatheter Aortic Valve Implantation. Circulation. 2021;144(17):1396–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Raschpichler M, Flint N, Yoon SH, Kaewkes D, Patel C, Singh C, et al. Commissural Alignment After Balloon-Expandable Transcatheter Aortic Valve Replacement Is Associated With Improved Hemodynamic Outcomes. JACC Cardiovasc Interv. 2022;15(11):1126–36.

    Article  PubMed  Google Scholar 

  68. Pibarot P, Borger MA, Clavel M-A, Griffith B, Bavaria JE, Svensson LG, et al. Study Design of the Prospective Non-Randomized Single-Arm Multicenter Evaluation of the Durability of Aortic Bioprosthetic Valves with RESILIA Tissue in Subjects under 65 Years Old (RESILIENCE Trial)*. Structural Heart. 2020;4(1):46–52.

    Article  Google Scholar 

  69. Dangas GD, Tijssen JGP, Wöhrle J, Søndergaard L, Gilard M, Möllmann H, et al. A Controlled Trial of Rivaroxaban after Transcatheter Aortic-Valve Replacement. N Engl J Med. 2020;382(2):120–9.

    Article  CAS  PubMed  Google Scholar 

  70. Brouwer J, Nijenhuis VJ, Delewi R, Hermanides RS, Holvoet W, Dubois CLF, et al. Aspirin with or without clopidogrel after transcatheter aortic-valve implantation. N Engl J Med. 2020;383(15):1447–57.

    Article  CAS  PubMed  Google Scholar 

  71. Nijenhuis VJ, Brouwer J, Delewi R, Hermanides RS, Holvoet W, Dubois CLF, et al. Anticoagulation with or without Clopidogrel after Transcatheter Aortic-Valve Implantation. N Engl J Med. 2020;382(18):1696–707.

    Article  CAS  PubMed  Google Scholar 

  72. Kobari Y, Inohara T, Tsuruta H, Yashima F, Shimizu H, Fukuda K, et al. No Antithrombotic Therapy After Transcatheter Aortic Valve Replacement: Insight From the OCEAN-TAVI Registry. JACC Cardiovasc Interv. 2023;16(1):79–91.

    Article  PubMed  Google Scholar 

  73. De Backer O, Dangas GD, Jilaihawi H, Leipsic JA, Terkelsen CJ, Makkar R, et al. Reduced Leaflet Motion after Transcatheter Aortic-Valve Replacement. N Engl J Med. 2020;382(2):130–9.

    Article  PubMed  Google Scholar 

  74. Montalescot G, Redheuil A, Vincent F, Desch S, De Benedictis M, Eltchaninoff H, et al. Apixaban and Valve Thrombosis After Transcatheter Aortic Valve Replacement: The ATLANTIS-4D-CT Randomized Clinical Trial Substudy. JACC Cardiovasc Interv. 2022;15(18):1794–804.

    Article  PubMed  Google Scholar 

  75. Van Mieghem NM, Unverdorben M, Hengstenberg C, Möllmann H, Mehran R, López-Otero D, et al. Edoxaban versus vitamin K antagonist for atrial fibrillation after TAVR. N Engl J Med. 2021;385(23):2150–60.

    Article  PubMed  Google Scholar 

  76. Van Belle E, Rauch A, Vincent F, Robin E, Kibler M, Labreuche J, et al. Von Willebrand Factor Multimers during Transcatheter Aortic-Valve Replacement. N Engl J Med. 2016;375(4):335–44.

    Article  PubMed  Google Scholar 

  77. Kibler M, Marchandot B, Messas N, Labreuche J, Vincent F, Grunebaum L, et al. Primary Hemostatic Disorders and Late Major Bleeding After Transcatheter Aortic Valve Replacement. J Am Coll Cardiol. 2018;72(18):2139–48.

    Article  PubMed  Google Scholar 

  78. Dietrich L, Kibler M, Matsushita K, Marchandot B, Trimaille A, Reydel A, et al. Impact of primary hemostasis disorders on late major bleeding events among anticoagulated atrial fibrillation patients treated by TAVR. J Clin Med. 2021;11(1):212.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Matsushita K, Trimaille A, Marchandot B, Ohlmann P, Morel O. Oral anticoagulant dose adjustment after TAVR: the role of closure time with adenosine diphosphate. JACC Cardiovasc Interv. 2022;15(24):2575.

    Article  PubMed  Google Scholar 

  80. Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK, et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N Engl J Med. 2016;374(17):1609–20.

    Article  CAS  PubMed  Google Scholar 

  81. Mack MJ, Leon MB, Thourani VH, Makkar R, Kodali SK, Russo M, et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N Engl J Med. 2019;380(18):1695–705.

    Article  PubMed  Google Scholar 

  82. Smith CR, Leon MB, Mack MJ, Miller DC, Moses JW, Svensson LG, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011;364(23):2187–98.

    Article  CAS  PubMed  Google Scholar 

  83. Chen S, Redfors B, Nazif T, Kirtane A, Crowley A, Ben-Yehuda O, et al. Impact of renin-angiotensin system inhibitors on clinical outcomes in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement: an analysis of from the PARTNER 2 trial and registries. Eur Heart J. 2020;41(8):943–54.

    Article  CAS  PubMed  Google Scholar 

  84. Rodriguez-Gabella T, Catalá P, Muñoz-García AJ, Nombela-Franco L, Del Valle R, Gutiérrez E, et al. Renin-Angiotensin System Inhibition Following Transcatheter Aortic Valve Replacement. J Am Coll Cardiol. 2019;74(5):631–41.

    Article  CAS  PubMed  Google Scholar 

  85. Saito T, Yoshijima N, Hase H, Yashima F, Tsuruta H, Shimizu H, et al. Impact of beta blockers on patients undergoing transcatheter aortic valve replacement: the OCEAN-TAVI registry. Open Heart. 2020;7(2):e001269.

    Article  PubMed  PubMed Central  Google Scholar 

  86. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019;381(21):1995–2008.

    Article  CAS  PubMed  Google Scholar 

  87. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med. 2021;385(16):1451–61.

    Article  CAS  PubMed  Google Scholar 

  88. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 2020;383(15):1413–24.

    Article  CAS  PubMed  Google Scholar 

  89. Park SH, Belcastro E, Hasan H, Matsushita K, Marchandot B, Abbas M, et al. Angiotensin II-induced upregulation of SGLT1 and 2 contributes to human microparticle-stimulated endothelial senescence and dysfunction: protective effect of gliflozins. Cardiovasc Diabetol. 2021;20(1):65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, et al. Effect of Empagliflozin on Left Ventricular Mass in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation. 2019;140(21):1693–702.

    Article  PubMed  Google Scholar 

  91. Zhang N, Feng B, Ma X, Sun K, Xu G, Zhou Y. Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction. Cardiovasc Diabetol. 2019;18(1):107.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Habibi J, Aroor AR, Sowers JR, Jia G, Hayden MR, Garro M, et al. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes. Cardiovasc Diabetol. 2017;16(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Adingupu DD, Göpel SO, Grönros J, Behrendt M, Sotak M, Miliotis T, et al. SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob(-/-) mice. Cardiovasc Diabetol. 2019;18(1):16.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Satoh T, Wang L, Espinosa-Diez C, Wang B, Hahn SA, Noda K, et al. Metabolic Syndrome Mediates ROS-miR-193b-NFYA-Dependent Downregulation of Soluble Guanylate Cyclase and Contributes to Exercise-Induced Pulmonary Hypertension in Heart Failure With Preserved Ejection Fraction. Circulation. 2021;144(8):615–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bruckert C, Matsushita K, Mroueh A, Amissi S, Auger C, Houngue U, et al. Empagliflozin prevents angiotensin II-induced hypertension related micro and macrovascular endothelial cell activation and diastolic dysfunction in rats despite persistent hypertension: Role of endothelial SGLT1 and 2. Vascul Pharmacol. 2022;6(146): 107095.

    Article  Google Scholar 

  96. Amat-Santos IJ, Sánchez-Luna JP, Abu-Assi E, Melendo-Viu M, Cruz-Gonzalez I, Nombela-Franco L, et al. Rationale and design of the Dapagliflozin after Transcatheter Aortic Valve Implantation (DapaTAVI) randomized trial. Eur J Heart Fail. 2022;24(3):581–8.

    Article  CAS  PubMed  Google Scholar 

  97. Kim JB, Kobayashi Y, Kuznetsova T, Moneghetti KJ, Brenner DA, O’Malley R, et al. Cytokines profile of reverse cardiac remodeling following transcatheter aortic valve replacement. Int J Cardiol. 2018;1(270):83–8.

    Article  Google Scholar 

  98. Rheude T, Pellegrini C, Michel J, Trenkwalder T, Mayr NP, Kessler T, et al. Prognostic impact of anemia and iron-deficiency anemia in a contemporary cohort of patients undergoing transcatheter aortic valve implantation. Int J Cardiol. 2017;1(244):93–9.

    Article  Google Scholar 

  99. Hirji SA, Percy ED, McGurk S, Malarczyk A, Harloff MT, Yazdchi F, et al. Incidence, Characteristics, Predictors, and Outcomes of Surgical Explantation After Transcatheter Aortic Valve Replacement. J Am Coll Cardiol. 2020;76(16):1848–59.

    Article  PubMed  Google Scholar 

  100. Bapat VN, Zaid S, Fukuhara S, Saha S, Vitanova K, Kiefer P, et al. Surgical Explantation After TAVR Failure: Mid-Term Outcomes From the EXPLANT-TAVR International Registry. JACC Cardiovasc Interv. 2021;14(18):1978–91.

    Article  PubMed  Google Scholar 

  101. Landes U, Webb JG, De Backer O, Sondergaard L, Abdel-Wahab M, Crusius L, et al. Repeat Transcatheter Aortic Valve Replacement for Transcatheter Prosthesis Dysfunction. J Am Coll Cardiol. 2020;75(16):1882–93.

    Article  PubMed  Google Scholar 

  102. Landes U, Sathananthan J, Witberg G, De Backer O, Sondergaard L, Abdel-Wahab M, et al. Transcatheter Replacement of Transcatheter Versus Surgically Implanted Aortic Valve Bioprostheses. J Am Coll Cardiol. 2021;77(1):1–14.

    Article  PubMed  Google Scholar 

  103. Akodad M, Sellers S, Landes U, Meier D, Tang GHL, Gada H, et al. Balloon-Expandable Valve for Treatment of Evolut Valve Failure: Implications on Neoskirt Height and Leaflet Overhang. JACC Cardiovasc Interv. 2022;15(4):368–77.

    Article  PubMed  Google Scholar 

  104. De Backer O, Landes U, Fuchs A, Yoon SH, Mathiassen ON, Sedaghat A, et al. Coronary Access After TAVR-in-TAVR as Evaluated by Multidetector Computed Tomography. JACC Cardiovasc Interv. 2020;13(21):2528–38.

    Article  PubMed  Google Scholar 

  105. Forrestal BJ, Case BC, Yerasi C, Shea C, Torguson R, Zhang C, et al. Risk of Coronary Obstruction and Feasibility of Coronary Access After Repeat Transcatheter Aortic Valve Replacement With the Self-Expanding Evolut Valve: A Computed Tomography Simulation Study. Circ Cardiovasc Interv. 2020;13(12): e009496.

    Article  PubMed  Google Scholar 

  106. Rogers T, Greenspun BC, Weissman G, Torguson R, Craig P, Shults C, et al. Feasibility of Coronary Access and Aortic Valve Reintervention in Low-Risk TAVR Patients. JACC Cardiovasc Interv. 2020;13(6):726–35.

    Article  PubMed  Google Scholar 

  107. Lederman RJ, Babaliaros VC, Rogers T, Khan JM, Kamioka N, Dvir D, et al. Preventing Coronary Obstruction During Transcatheter Aortic Valve Replacement: From Computed Tomography to BASILICA. JACC Cardiovasc Interv. 2019;12(13):1197–216.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Khan JM, Dvir D, Greenbaum AB, Babaliaros VC, Rogers T, Aldea G, et al. Transcatheter Laceration of Aortic Leaflets to Prevent Coronary Obstruction During Transcatheter Aortic Valve Replacement: Concept to First-in-Human. JACC Cardiovasc Interv. 2018;11(7):677–89.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kitamura M, Wilde J, Dumpies O, Richter I, Obradovic D, Krieghoff C, et al. Risk Assessment of Coronary Obstruction During Transcatheter Aortic Valve Replacement: Insights From Post-BASILICA Computed Tomography. JACC Cardiovasc Interv. 2022;15(5):496–507.

    Article  PubMed  Google Scholar 

  110. Komatsu I, Mackensen GB, Aldea GS, Reisman M, Dvir D. Bioprosthetic or native aortic scallop intentional laceration to prevent iatrogenic coronary artery obstruction. Part 1: how to evaluate patients for BASILICA. EuroIntervention. 2019;15(1):47–54.

    Article  PubMed  Google Scholar 

  111. Qureshi WT, Parker M, Walker J, Kakouros N. Equipment entrapment during redo-TAVR with successful BASILICA procedure. Catheterization Cardiovasc Interventions. 2021;98(2):E320–3.

    Article  Google Scholar 

  112. Sathananthan J, Fraser R, Landes U, Rich C, Sellers SL, Leipsic J, et al. Repeat transcatheter aortic valve implantation and implications for transcatheter heart valve performance: insights from bench testing. EuroIntervention. 2021;17(10):856–64.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Groupe pour l’Enseignement, la prévention et la Recherche Cardiologique en Alsace.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written, read, approved by all authors.

Corresponding author

Correspondence to Kensuke Matsushita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 64 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsushita, K., Morel, O. & Ohlmann, P. Contemporary issues and lifetime management in patients underwent transcatheter aortic valve replacement. Cardiovasc Interv and Ther 38, 275–286 (2023). https://doi.org/10.1007/s12928-023-00924-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12928-023-00924-z

Keywords

Navigation