Skip to main content

Advertisement

Log in

Japanese high bleeding risk criteria status predicts low thrombogenicity and bleeding events in patients undergoing percutaneous coronary intervention

  • Original Article
  • Published:
Cardiovascular Intervention and Therapeutics Aims and scope Submit manuscript

Abstract

Although the Japanese high bleeding risk criteria (J-HBR) were established to predict bleeding risk in patients undergoing percutaneous coronary intervention (PCI), the thrombogenicity in the J-HBR status remains unknown. Here, we examined the relationships among J-HBR status, thrombogenicity and bleeding events. This study was a retrospective analysis of 300 consecutive patients who underwent PCI. Blood samples obtained on the day of PCI were used in the total thrombus-formation analysis system (T-TAS) to investigate the thrombus-formation area under the curve (AUC; PL18-AUC10 for platelet chip; AR10-AUC30 for atheroma chip). The J-HBR score was calculated by adding 1 point for any major criterion and 0.5 point for any minor criterion. We assigned patients to three groups based on J-HBR status: a J-HBR-negative group (n = 80), a low score J-HBR-positive group (positive/low, n = 109), and a high score J-HBR-positive group (positive/high, n = 111). The primary end point was the 1-year incidence of bleeding events defined by the Bleeding Academic Research Consortium types 2, 3, or 5. Both PL18-AUC10 and AR10-AUC30 levels were lower in the J-HBR-positive/high group than the negative group. Kaplan–Meier analysis showed worse 1-year bleeding event-free survival in the J-HBR-positive/high group compared with the negative group. In addition, both T-TAS levels in J-HBR positivity were lower in those with bleeding events than in those without bleeding events. In multivariate Cox regression analyses, the J-HBR-positive/high status was significantly associated with 1-year bleeding events. In conclusion, the J-HBR-positive/high status could reflect low thrombogenicity as measured by T-TAS and high bleeding risk in patients undergoing PCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The deidentified participant data will not be shared.

References

  1. Palmerini T, Benedetto U, Bacchi-Reggiani L, Della Riva D, Biondi-Zoccai G, Feres F, et al. Mortality in patients treated with extended duration dual antiplatelet therapy after drug-eluting stent implantation: a pairwise and Bayesian network meta-analysis of randomised trials. Lancet. 2015;385:2371–82.

    Article  CAS  PubMed  Google Scholar 

  2. Urban P, Mehran R, Colleran R, Angiolillo DJ, Byrne RA, Capodanno D, et al. Defining high bleeding risk in patients undergoing percutaneous coronary intervention: a consensus document from the academic research consortium for high bleeding risk. Eur Heart J. 2019;40:2632–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Urban P, Mehran R, Colleran R, Angiolillo DJ, Byrne RA, Capodanno D, et al. Defining high bleeding risk in patients undergoing percutaneous coronary intervention. Circulation. 2019;140:240–61.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ueki Y, Bär S, Losdat S, Otsuka T, Zanchin C, Zanchin T, et al. Validation of the academic research consortium for high bleeding risk (ARC-HBR) criteria in patients undergoing percutaneous coronary intervention and comparison with contemporary bleeding risk scores. EuroIntervention. 2020;16:371–9.

    Article  PubMed  Google Scholar 

  5. Natsuaki M, Morimoto T, Shiomi H, Yamaji K, Watanabe H, Shizuta S, et al. Application of the academic research consortium high bleeding risk criteria in an all-comers registry of percutaneous coronary intervention. Circ Cardiovasc Interv. 2019;12: e008307.

    Article  PubMed  Google Scholar 

  6. Nakamura M, Kadota K, Nakao K, Nakagawa Y, Shite J, Yokoi H, et al. High bleeding risk and clinical outcomes in East Asian patients undergoing percutaneous coronary intervention: the PENDULUM registry. EuroIntervention. 2021;16:1154–62.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cao D, Mehran R, Dangas G, Baber U, Sartori S, Chandiramani R, et al. Validation of the academic research consortium high bleeding risk definition in contemporary PCI patients. J Am Coll Cardiol. 2020;75:2711–22.

    Article  PubMed  Google Scholar 

  8. Nakamura M, Iijima R. Implications and characteristics of high bleeding risk in East Asian patients undergoing percutaneous coronary intervention: start with what is right rather than what is acceptable. J Cardiol. 2021;78:91–8.

    Article  PubMed  Google Scholar 

  9. Natsuaki M, Morimoto T, Yamaji K, Watanabe H, Yoshikawa Y, Shiomi H, et al. Prediction of thrombotic and bleeding events after percutaneous coronary intervention: CREDO-Kyoto thrombotic and bleeding risk scores. J Am Heart Assoc. 2018;7:e008708.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nakamura M, Kitazono T, Kozuma K, Sekine T, Nakamura S, Shiosakai K, et al. Prasugrel for Japanese patients with ischemic heart disease in long-term clinical practice (PRASFIT-Practice II) - 1-year follow-up results of a postmarketing observational study. Circ J. 2019;84:101–8.

    Article  PubMed  Google Scholar 

  11. Numasawa Y, Kohsaka S, Ueda I, Miyata H, Sawano M, Kawamura A, et al. Incidence and predictors of bleeding complications after percutaneous coronary intervention. J Cardiol. 2017;69:272–9.

    Article  PubMed  Google Scholar 

  12. Nakamura M, Kimura K, Kimura T, Ishihara M, Otsuka F, Kozuma K, et al. JCS 2020 guideline focused update on antithrombotic therapy in patients with coronary artery disease. Circ J. 2020;84:831–65.

    Article  PubMed  Google Scholar 

  13. Natsuaki M, Morimoto T, Shiomi H, Ehara N, Taniguchi R, Tamura T, et al. Application of the modified high bleeding risk criteria for Japanese patients in an all-comers registry of percutaneous coronary intervention - from the CREDO-Kyoto registry cohort-3. Circ J. 2021;85:769–81.

    Article  CAS  PubMed  Google Scholar 

  14. Shimizu T, Sakuma Y, Kurosawa Y, Muto Y, Sato A, et al. Validation of Japanese bleeding risk criteria in patients after percutaneous coronary intervention and comparison with contemporary bleeding risk criteria. Circ Rep. 2022. https://doi.org/10.1253/circrep.CR-22-0023.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kaikita K, Hosokawa K, Dahlen JR, Tsujita K. Total thrombus-formation analysis system (T-TAS): clinical application of quantitative analysis of thrombus formation in cardiovascular disease. Thromb Haemost. 2019;119:1554–62.

    Article  PubMed  Google Scholar 

  16. Ito M, Kaikita K, Sueta D, Ishii M, Oimatsu Y, Arima Y, et al. Total thrombus-formation analysis system (T-TAS) can predict periprocedural bleeding events in patients undergoing catheter ablation for atrial fibrillation. J Am Heart Assoc. 2016;5:e002744.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Oimatsu Y, Kaikita K, Ishii M, Mitsuse T, Ito M, Arima Y, et al. Total thrombus-formation analysis system predicts periprocedural bleeding events in patients with coronary artery disease undergoing percutaneous coronary intervention. J Am Heart Assoc. 2017;6:e005263.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mitsuse T, Kaikita K, Ishii M, Oimatsu Y, Nakanishi N, Ito M, et al. Total thrombus-formation analysis system can predict 1-year bleeding events in patients with coronary artery disease. J Atheroscler Thromb. 2020;27:215–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakanishi N, Kaikita K, Ishii M, Kuyama N, Tabata N, Ito M, et al. Development and assessment of total thrombus-formation analysis system-based bleeding risk model in patients undergoing percutaneous coronary intervention. Int J Cardiol. 2021;325:121–6.

    Article  PubMed  Google Scholar 

  20. Nakanishi N, Kaikita K, Ishii M, Kuyama N, Tabata N, Ito M, et al. Hemodialysis-related low thrombogenicity measured by total thrombus-formation analysis system in patients undergoing percutaneous coronary intervention. Thromb Res. 2021;200:141–8.

    Article  CAS  PubMed  Google Scholar 

  21. Nakanishi N, Kaikita K, Ishii M, Kuyama N, Tabata N, Ito M, et al. Malnutrition-associated high bleeding risk with low thrombogenicity in patients undergoing percutaneous coronary intervention. Nutr Metab Cardiovasc Dis. 2022;32:1227–35.

    Article  PubMed  Google Scholar 

  22. Maisel AS, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, Duc P, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347:161–7.

    Article  CAS  PubMed  Google Scholar 

  23. Hill SA, Booth RA, Santaguida PL, Don-Wauchope A, Brown JA, Oremus M, et al. Use of BNP and NT-proBNP for the diagnosis of heart failure in the emergency department: a systematic review of the evidence. Heart Fail Rev. 2014;19:421–38.

    Article  CAS  PubMed  Google Scholar 

  24. Hosokawa K, Ohnishi T, Kondo T, Fukasawa M, Koide T, Maruyama I, et al. A novel automated microchip flow-chamber system to quantitatively evaluate thrombus formation and antithrombotic agents under blood flow conditions. J Thromb Haemost. 2011;9:2029–37.

    Article  CAS  PubMed  Google Scholar 

  25. Hosokawa K, Ohnishi T, Sameshima H, Miura N, Ito T, Koide T, et al. Analysing responses to aspirin and clopidogrel by measuring platelet thrombus formation under arterial flow conditions. Thromb Haemost. 2013;109:102–11.

    Article  CAS  PubMed  Google Scholar 

  26. Hosokawa K, Ohnishi T, Fukasawa M, Kondo T, Sameshima H, Koide T, et al. A microchip flow-chamber system for quantitative assessment of the platelet thrombus formation process. Microvasc Res. 2012;83:154–61.

    Article  PubMed  Google Scholar 

  27. Sueta D, Kaikita K, Okamoto N, Arima Y, Ishii M, Ito M, et al. A novel quantitative assessment of whole blood thrombogenicity in patients treated with a non-vitamin K oral anticoagulant. Int J Cardiol. 2015;197:98–100.

    Article  PubMed  Google Scholar 

  28. Mehran R, Rao SV, Bhatt DL, Gibson CM, Caixeta A, Eikelboom J, et al. Standardized bleeding definitions for cardiovascular clinical trials: a consensus report from the bleeding academic research consortium. Circulation. 2011;123:2736–47.

    Article  PubMed  Google Scholar 

  29. Valle JA, Shetterly S, Maddox TM, Ho PM, Bradley SM, Sandhu A, et al. Postdischarge bleeding after percutaneous coronary intervention and subsequent mortality and myocardial infarction: insights from the HMO research network-stent registry. Circ Cardiovasc Interv. 2016;9:e003519.

    Article  PubMed  Google Scholar 

  30. Palmerini T, Bacchi Reggiani L, Della Riva D, Romanello M, Feres F, Abizaid A, et al. Bleeding-related deaths in relation to the duration of dual-antiplatelet therapy after coronary stenting. J Am Coll Cardiol. 2017;69:2011–22.

    Article  PubMed  Google Scholar 

  31. Kaikita K, Yasuda S, Akao M, Ako J, Matoba T, Nakamura M, et al. Bleeding and subsequent cardiovascular events and death in atrial fibrillation with stable coronary artery disease: insights from the AFIRE trial. Circ Cardiovasc Interv. 2021;14: e010476.

    Article  CAS  PubMed  Google Scholar 

  32. Yasuda S, Kaikita K, Akao M, Ako J, Matoba T, Nakamura M, et al. Antithrombotic therapy for atrial fibrillation with stable coronary disease. N Engl J Med. 2019;381:1103–13.

    Article  CAS  PubMed  Google Scholar 

  33. Palmerini T, Stone GW. Optimal duration of dual antiplatelet therapy after drug-eluting stent implantation: conceptual evolution based on emerging evidence. Eur Heart J. 2016;37:353–64.

    Article  CAS  PubMed  Google Scholar 

  34. Malinin A, Pokov A, Spergling M, Defranco A, Schwartz K, Schwartz D, et al. Monitoring platelet inhibition after clopidogrel with the VerifyNow-P2Y12(R) rapid analyzer: the VERIfy thrombosis risk assessment (VERITAS) study. Thromb Res. 2007;119:277–84.

    Article  CAS  PubMed  Google Scholar 

  35. Zafar MU, Santos-Gallego CG, Badimon L, Badimon JJ. Badimon perfusion chamber: an ex vivo model of thrombosis. Methods Mol Biol. 2018;1816:161–71.

    Article  CAS  PubMed  Google Scholar 

  36. Nogami K. The utility of thromboelastography in inherited and acquired bleeding disorders. Br J Haematol. 2016;174:503–14.

    Article  PubMed  Google Scholar 

  37. Tóth O, Calatzis A, Penz S, Losonczy H, Siess W. Multiple electrode aggregometry: a new device to measure platelet aggregation in whole blood. Thromb Haemost. 2006;96:781–8.

    Article  PubMed  Google Scholar 

  38. Favaloro EJ. Clinical utility of the PFA-100. Semin Thromb Hemost. 2008;34:709–33.

    Article  CAS  PubMed  Google Scholar 

  39. Sato Y, Yoshihisa A, Takeishi R, Ohara H, Sugawara Y, Ichijo Y, et al. B-type natriuretic peptide is associated with the occurrence of bleeding events in heart failure patients with a history of coronary artery disease. J Cardiol. 2022;80:88–93.

    Article  PubMed  Google Scholar 

  40. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–726.

    Article  CAS  PubMed  Google Scholar 

  41. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American college of cardiology foundation/American heart association task force on practice guidelines. J Am Coll Cardiol. 2013;62:e147-239.

    Article  PubMed  Google Scholar 

  42. Tsutsui H, Isobe M, Ito H, Ito H, Okumura K, Ono M, et al. JCS 2017/JHFS 2017 guideline on diagnosis and treatment of acute and chronic heart failure - digest version. Circ J. 2019;83:2084–184.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Hosokawa and T. Ohnishi from the Research Institute, Fujimori Kogyo Co., Yokohama, Kanagawa, Japan, for their excellent technical support in operating the T-TAS®. We also thank all paramedical staff members and clinical secretaries for their kind support during this work.

Funding

This study was supported in part by grants-in-aid for Scientific Research (#15K09089 and #18K08110) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Kaikita.

Ethics declarations

Conflict of interest

Dr. Koichi Kaikita has received remuneration for lecturing from Bayer Yakuhin, Ltd., Daiichi-Sankyo Co., Ltd., Novartis Pharma AG., and Otsuka Pharmaceutical Co., Ltd.; trust research/joint research funds from SBI Pharmaceuticals Co., Ltd., Bayer Yakuhin, Ltd., and Daiichi-Sankyo Co., Ltd.; and scholarship funds from Abbott Medical Co., Ltd. Dr. Kenichi Tsujita has received remuneration for lecturing from Amgen Astellas BioPharma K.K., Bayer Yakuhin, Ltd., Bristol-Myers K.K., Daiichi Sankyo Co., Ltd., Kowa Pharmaceutical Co. Ltd., MSD K.K., Pfizer Japan Inc., Takeda Pharmaceutical Co., Ltd., ITI Co., Ltd., trust research/joint research funds from Bristol-Myers K.K., Kowa Pharmaceutical Co. Ltd., and scholarship funds from Abbott Medical Japan L.L.C, Abbott Vascular Japan Co., Ltd., Boston Scientific Japan K.K., Cardinal Health Japan, Chugai Pharmaceutical Co, Ltd., Fides-one, Inc., Fukuda Denshi Co., Ltd., Japan Lifeline Co., Ltd., Kaneka Medix Co., Ltd., Medtronic Japan Co., Ltd., Mitsubishi Tanabe Pharma, NIHON KOHDEN CORPORATION, NIPRO CORPORATION, Otsuka Pharmaceutical Co., Ltd., Takeda Pharmaceutical Co., Ltd., and TERUMO Co, Ltd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakanishi, N., Kaikita, K., Ishii, M. et al. Japanese high bleeding risk criteria status predicts low thrombogenicity and bleeding events in patients undergoing percutaneous coronary intervention. Cardiovasc Interv and Ther 38, 299–308 (2023). https://doi.org/10.1007/s12928-023-00920-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12928-023-00920-3

Keywords

Navigation