Skip to main content

Advertisement

Log in

Renal denervation in resistant hypertension: a review of clinical trials and future perspectives

  • Invited Review Article
  • Published:
Cardiovascular Intervention and Therapeutics Aims and scope Submit manuscript

Abstract

A previous report using the National Health and Nutrition Examination Survey demonstrated an increase in the prevalence of resistant hypertension, which does not respond to traditional therapy and medication. Studies using various animal hypertensive models have demonstrated significant blood pressure (BP) reduction following renal artery denervation (RDN). Catheter-based RDN became available in clinical trials as a possible treatment option for resistant hypertension. Although first clinical trials of RDN have demonstrated the efficacy and safety of this treatment mortality for lowering BP in patients with resistant hypertension, the role of RDN has been questioned since the results of the Symplicity HTN-3 trial. Considering the ethnic differences demonstrated in the Symplicity HTN-Japan and Global Symplicity registry, by contrast, RDN might be an effective for resistant hypertension in Asian population. Here, we discuss RDN applications and technology, the old and new clinical evidence of RDN, patients’ selection of RDN responder, and optimization of RDN procedure in this review. The available evidence demonstrates that RDN could be effective in carefully selected patients with resistant hypertension, paving the way for future research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23. https://doi.org/10.1016/S0140-6736(05)17741-1.

    Article  PubMed  Google Scholar 

  2. Pezzini A, Grassi M, Lodigiani C, Patella R, Gandolfo C, Zini A, et al. Predictors of long-term recurrent vascular events after ischemic stroke at young age: the Italian Project on Stroke in Young Adults. Circulation. 2014;129:1668–76. https://doi.org/10.1161/CIRCULATIONAHA.113.005663.

    Article  PubMed  Google Scholar 

  3. Carey RM, Calhoun DA, Bakris GL, Brook RD, Daugherty SL, Dennison-Himmelfarb CR, et al. Resistant hypertension: detection, evaluation, and management: a scientific statement from the American Heart Association. Hypertension. 2018;72:e53–90. https://doi.org/10.1161/HYP.0000000000000084.

    Article  CAS  PubMed  Google Scholar 

  4. Pimenta E, Calhoun DA. Resistant hypertension: incidence, prevalence, and prognosis. Circulation. 2012;125:1594–6. https://doi.org/10.1161/CIRCULATIONAHA.112.097345.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Krum H, Schlaich M, Sobotka P. Renal sympathetic nerve ablation for treatment-resistant hypertension. Br J Clin Pharmacol. 2013;76:495–503. https://doi.org/10.1111/bcp.12171.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sakakura K, Ladich E, Cheng Q, Otsuka F, Yahagi K, Fowler DR, et al. Anatomic assessment of sympathetic peri-arterial renal nerves in man. J Am Coll Cardiol. 2014;64:635–43. https://doi.org/10.1016/j.jacc.2014.03.059.

    Article  PubMed  Google Scholar 

  7. Worthley SG, Tsioufis CP, Worthley MI, Sinhal A, Chew DP, Meredith IT, et al. Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial. Eur Heart J. 2013;34:2132–40. https://doi.org/10.1093/eurheartj/eht197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Worthley SG, Wilkins GT, Webster MW, Montarello JK, Delacroix S, Whitbourn RJ, et al. Safety and performance of the second generation EnligHTN renal denervation system in patients with drug-resistant, uncontrolled hypertension. Atherosclerosis. 2017;262:94–100. https://doi.org/10.1016/j.atherosclerosis.2017.04.022.

    Article  CAS  PubMed  Google Scholar 

  9. Whitbourn R, Harding SA, Walton A. Symplicity multi-electrode radiofrequency renal denervation system feasibility study. EuroIntervention. 2015;11:104–9. https://doi.org/10.4244/EIJV11I1A18.

    Article  PubMed  Google Scholar 

  10. Jiang XJ, Dong H, Liang T, Zou YB, Xu B, Gao RL. First-in-man report of a novel dedicated radiofrequency catheter for renal denervation via the transulnar approach. EuroIntervention. 2013;9:684–6. https://doi.org/10.4244/EIJV9I6A111.

    Article  PubMed  Google Scholar 

  11. Ormiston JA, Watson T, van Pelt N, Stewart R, Haworth P, Stewart JT, et al. First-inhuman use of the OneShot renal denervation system from Covidien. EuroIntervention. 2013;8:1090–4. https://doi.org/10.4244/EIJV8I9A166.

    Article  PubMed  Google Scholar 

  12. Sievert H, Schofer J, Ormiston J, Hoppe UC, Meredith IT, Walters DL, et al. Renal denervation with a percutaneous bipolar radiofrequency balloon catheter in patients with resistant hypertension: 6-month results from the REDUCE-HTN clinical study. EuroIntervention. 2015;10:1213–20. https://doi.org/10.4244/EIJY14M12_01.

    Article  PubMed  Google Scholar 

  13. Sakakura K, Roth A, Ladich E, Shen K, Coleman L, Joner M, et al. Controlled circumferential renal sympathetic denervation with preservation of the renal arterial wall using intraluminal ultrasound: a next-generation approach for treating sympathetic overactivity. EuroIntervention. 2015;10:1230–8. https://doi.org/10.4244/EIJY14M10_14.

    Article  PubMed  Google Scholar 

  14. Pathak A, Coleman L, Roth A, Stanley J, Bailey L, Markham P, et al. Renal sympathetic nerve denervation using intraluminal ultrasound within a cooling balloon preserves the arterial wall and reduces sympathetic nerve activity. EuroIntervention. 2015;11:477–84. https://doi.org/10.4244/EIJV11I4A96.

    Article  PubMed  Google Scholar 

  15. Schmieder RE, Ott C, Toennes SW, Bramlage P, Gertner M, Dawood O, et al. Phase II randomized sham-controlled study of renal denervation for individuals with uncontrolled hypertension—WAVE IV. J Hypertens. 2018;36:680–9. https://doi.org/10.1097/HJH.0000000000001584.

    Article  CAS  PubMed  Google Scholar 

  16. Fischell TA, Vega F, Raju N, Johnson ET, Kent DJ, Ragland RR, et al. Ethanol-mediated perivascular renal sympathetic denervation: preclinical validation of safety and efficacy in a porcine model. EuroIntervention. 2013;9:140–7. https://doi.org/10.4244/EIJV9I1A20.

    Article  PubMed  Google Scholar 

  17. Fischell TA, Ebner A, Gallo S, Ikeno F, Minarsch L, Vega F, et al. Transcatheter alcohol-mediated perivascular renal denervation with the peregrine system: first-in-human experience. JACC Cardiovasc Interv. 2016;9:589–98. https://doi.org/10.1016/j.jcin.2015.11.041.2016/03/26].

    Article  PubMed  Google Scholar 

  18. Stefanadis C, Toutouzas K, Vlachopoulos C, Tsioufis C, Synetos A, Pietri P, et al. Chemical denervation of the renal artery with vincristine for the treatment of resistant arterial hypertension: first-in-man application. Hellenic J Cardiol. 2013;54:318–21.

    PubMed  Google Scholar 

  19. Prochnau D, Figulla HR, Romeike BF, Franz M, Schubert H, Bischoff S, et al. Percutaneous catheter-based cryoablation of the renal artery is effective for sympathetic denervation in a sheep model. Int J Cardiol. 2011;152:268–70. https://doi.org/10.1016/j.ijcard.2011.08.001.

    Article  CAS  PubMed  Google Scholar 

  20. Qian PC, Barry MA, Al-Raisi S, Kovoor P, Pouliopoulos J, Nalliah CJ, et al. Transcatheter non-contact microwave ablation may enable circumferential renal artery denervation while sparing the vessel intima and media. EuroIntervention. 2017;12:e1907–15. https://doi.org/10.4244/EIJ-D-16-00509.

    Article  PubMed  Google Scholar 

  21. Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357. https://doi.org/10.1097/01.hjh.0000431740.32696.cc.

    Article  CAS  PubMed  Google Scholar 

  22. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370:1393–401. https://doi.org/10.1056/NEJMoa1402670.

    Article  CAS  PubMed  Google Scholar 

  23. Kandzari DE, Bhatt DL, Brar S, Devireddy CM, Esler M, Fahy M, et al. Predictors of blood pressure response in the Symplicity HTN-3 trial. Eur Heart J. 2015;36:219–27. https://doi.org/10.1093/eurheartj/ehu441.

    Article  PubMed  Google Scholar 

  24. Kario K, Ogawa H, Okumura K, Okura T, Saito S, Ueno T, et al. Symplicity HTN-Japan—first randomized controlled trial of catheter-based renal denervation in Asian patients. Circ J. 2015;79:1222–9. https://doi.org/10.1253/circj.CJ-15-0150.

    Article  CAS  PubMed  Google Scholar 

  25. Ueshima H, Sekikawa A, Miura K, Turin TC, Takashima N, Kita Y, et al. Cardiovascular disease and risk factors in Asia: a selected review. Circulation. 2008;118:2702–9. https://doi.org/10.1161/CIRCULATIONAHA.108.790048.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hoshide S, Kario K, de la Sierra A, Bilo G, Schillaci G, Banegas JR, et al. Ethnic differences in the degree of morning blood pressure surge and in its determinants between Japanese and European hypertensive subjects: data from the ARTEMIS study. Hypertension. 2015;66:750–6. https://doi.org/10.1161/HYPERTENSIONAHA.115.05958.

    Article  CAS  PubMed  Google Scholar 

  27. Kario K, Chen CH, Park S, Park CG, Hoshide S, Cheng HM, et al. Consensus document on improving hypertension management in Asian patients, taking into account Asian characteristics. Hypertension. 2018;71:375–82. https://doi.org/10.1161/HYPERTENSIONAHA.117.10238.

    Article  CAS  PubMed  Google Scholar 

  28. Gosain P, Garimella PS, Hart PD, Agarwal R. Renal sympathetic denervation for treatment of resistant hypertension: a systematic review. J Clin Hypertens (Greenwich). 2013;15:75–84. https://doi.org/10.1111/jch.12027.

    Article  Google Scholar 

  29. Böhm M, Kario K, Kandzari DE, Mahfoud F, Weber MA, Schmieder RE, et al. Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre, randomised, sham-controlled trial. Lancet. 2020;395:1444–51. https://doi.org/10.1016/S0140-6736(20)30554-7.

    Article  PubMed  Google Scholar 

  30. Mahfoud F, Böhm M, Schmieder R, Narkiewicz K, Ewen S, Ruilope L, et al. Effects of renal denervation on kidney function and long-term outcomes: 3-year follow-up from the Global SYMPLICITY Registry. Eur Heart J. 2019;40:3474–82. https://doi.org/10.1093/eurheartj/ehz118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee CK, Wang TD, Lee YH, Fahy M, Lee CH, Sung SH, et al. Efficacy and safety of renal denervation for patients with uncontrolled hypertension in Taiwan: 3-year results from the global SYMPLICITY registry-Taiwan (GSR-Taiwan). Acta Cardiol Sin. 2019;35:618–26. https://doi.org/10.6515/ACS.201911_35(6).20190826A.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kario K, Kim BK, Aoki J, Wong AY, Lee YH, Wongpraparut N, et al. Renal denervation in Asia: consensus statement of the Asia Renal Denervation Consortium. Hypertension. 2020;75:590–602. https://doi.org/10.1161/HYPERTENSIONAHA.119.13671.

    Article  CAS  PubMed  Google Scholar 

  33. Azizi M, Schmieder RE, Mahfoud F, Weber MA, Daemen J, Davies J, et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet. 2018;391:2335–45. https://doi.org/10.1016/S0140-6736(18)31082-1.

    Article  PubMed  Google Scholar 

  34. Azizi M, Rossignol P, Hulot JS. Emerging drug classes and their potential use in hypertension. Hypertension. 2019;74:1075–83. https://doi.org/10.1161/HYPERTENSIONAHA.119.12676.

    Article  CAS  PubMed  Google Scholar 

  35. Azizi M, Sanghvi K, Saxena M, Gosse P, Reilly JP, Levy T, et al. Ultrasound renal denervation for hypertension resistant to a triple medication pill (RADIANCE-HTN Trio): a randomised, multicentre, single-blind, sham-controlled trial. Lancet. 2021;397:2476–86. https://doi.org/10.1016/S0140-6736(21)00788-1.

    Article  CAS  PubMed  Google Scholar 

  36. Mauri L, Kario K, Basile J, Daemen J, Davies J, Kirtane AJ, et al. A multinational clinical approach to assessing the effectiveness of catheter-based ultrasound renal denervation: the RADIANCE-HTN and REQUIRE clinical study designs. Am Heart J. 2018;195:115–29. https://doi.org/10.1016/j.ahj.2017.09.006.

    Article  PubMed  Google Scholar 

  37. Desch S, Okon T, Heinemann D, Kulle K, Röhnert K, Sonnabend M, et al. Randomized sham-controlled trial of renal sympathetic denervation in mild resistant hypertension. Hypertension. 2015;65:1202–8. https://doi.org/10.1161/hypertensionaha.115.05283.

    Article  CAS  PubMed  Google Scholar 

  38. Kandzari DE, Böhm M, Mahfoud F, Townsend RR, Weber MA, Pocock S, et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet. 2018;391:2346–55. https://doi.org/10.1016/s0140-6736(18)30951-6.

    Article  PubMed  Google Scholar 

  39. Mathiassen ON, Vase H, Bech JN, Christensen KL, Buus NH, Schroeder AP, et al. Renal denervation in treatment-resistant essential hypertension. A randomized, SHAM-controlled, double-blinded 24-h blood pressure-based trial. J Hypertens. 2016;34:1639–47. https://doi.org/10.1097/hjh.0000000000000977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA, et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017;390:2160–70. https://doi.org/10.1016/s0140-6736(17)32281-x.

    Article  PubMed  Google Scholar 

  41. Mahfoud F, Böhm M, Azizi M, Pathak A, Durand Zaleski I, Ewen S, et al. Proceedings from the European clinical consensus conference for renal denervation: considerations on future clinical trial design. Eur Heart J. 2015;36:2219–27. https://doi.org/10.1093/eurheartj/ehv192.

    Article  PubMed  Google Scholar 

  42. Katayama T, Sueta D, Kataoka K, Hasegawa Y, Koibuchi N, Toyama K, et al. Long-term renal denervation normalizes disrupted blood pressure circadian rhythm and ameliorates cardiovascular injury in a rat model of metabolic syndrome. J Am Heart Assoc. 2013;2: e000197. https://doi.org/10.1161/JAHA.113.000197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakagawa T, Hasegawa Y, Uekawa K, Ma M, Katayama T, Sueta D, et al. Renal denervation prevents stroke and brain injury via attenuation of oxidative stress in hypertensive rats. J Am Heart Assoc. 2013;2: e000375. https://doi.org/10.1161/JAHA.113.000375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Katholi RE, Rocha-Singh KJ, Goswami NJ, Sobotka PA. Renal nerves in the maintenance of hypertension: a potential therapeutic target. Curr Hypertens Rep. 2010;12:196–204. https://doi.org/10.1007/s11906-010-0108-4.

    Article  PubMed  Google Scholar 

  45. Mahfoud F, Bakris G, Bhatt DL, Esler M, Ewen S, Fahy M, et al. Reduced blood pressure-lowering effect of catheter-based renal denervation in patients with isolated systolic hypertension: data from Symplicity HTN-3 and the Global SYMPLICITY Registry. Eur Heart J. 2017;38:93–100. https://doi.org/10.1093/eurheartj/ehw325.

    Article  CAS  PubMed  Google Scholar 

  46. Böhm M, Mahfoud F, Townsend RR, Kandzari DE, Pocock S, Ukena C, et al. Ambulatory heart rate reduction after catheter-based renal denervation in hypertensive patients not receiving anti-hypertensive medications: data from SPYRAL HTN-OFF MED, a randomized, sham-controlled, proof-of-concept trial. Eur Heart J. 2019;40:743–51. https://doi.org/10.1093/eurheartj/ehy871.

    Article  PubMed  Google Scholar 

  47. Chen W, Du H, Lu J, Ling Z, Long Y, Xu Y, et al. Renal artery vasodilation may be an indicator of successful sympathetic nerve damage during renal denervation procedure. Sci Rep. 2016;6:37218. https://doi.org/10.1038/srep37218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fengler K, Rommel KP, Hoellriegel R, Blazek S, Besler C, Desch S, et al. Pulse wave velocity predicts response to renal denervation in isolated systolic hypertension. J Am Heart Assoc. 2017;6: e005879. https://doi.org/10.1161/JAHA.117.005879.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ott C, Schmid A, Toennes SW, Ditting T, Veelken R, Uder M, et al. Central pulse pressure predicts BP reduction after renal denervation in patients with treatment-resistant hypertension. EuroIntervention. 2015;11:110–6. https://doi.org/10.4244/EIJV11I1A19.

    Article  PubMed  Google Scholar 

  50. Kario K, Yamamoto E, Tomita H, Okura T, Saito S, Ueno T, et al. Sufficient and persistent blood pressure reduction in the final long-term results from Symplicity HTN-Japan-safety and efficacy of renal denervation at 3 years. Circ J. 2019;83:622–9. https://doi.org/10.1253/circj.CJ-18-1018.

    Article  CAS  PubMed  Google Scholar 

  51. Mahfoud F, Tunev S, Ewen S, Cremers B, Ruwart J, Schulz-Jander D, et al. Impact of lesion placement on efficacy and safety of catheter-based radiofrequency renal denervation. J Am Coll Cardiol. 2015;66:1766–75. https://doi.org/10.1016/j.jacc.2015.08.018.

    Article  PubMed  Google Scholar 

  52. Fengler K, Ewen S, Höllriegel R, Rommel KP, Kulenthiran S, Lauder L, et al. Blood pressure response to main renal artery and combined main renal artery plus branch renal denervation in patients with resistant hypertension. J Am Heart Assoc. 2017;6: e006196. https://doi.org/10.1161/JAHA.117.006196.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lambert T, Nahler A, Rohla M, Reiter C, Grund M, Kammler J, et al. Endpoint design for future renal denervation trials—novel implications for a new definition of treatment response to renal denervation. Int J Cardiol. 2016;220:273–8. https://doi.org/10.1016/j.ijcard.2016.06.110.

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichiro Yamamoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, E., Sueta, D. & Tsujita, K. Renal denervation in resistant hypertension: a review of clinical trials and future perspectives. Cardiovasc Interv and Ther 37, 450–457 (2022). https://doi.org/10.1007/s12928-022-00854-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12928-022-00854-2

Keywords

Navigation