Skip to main content
Log in

Practical utilization of cardiac computed tomography for the success in complex coronary intervention

  • Invited Review Article
  • Published:
Cardiovascular Intervention and Therapeutics Aims and scope Submit manuscript

Abstract

Percutaneous coronary intervention (PCI) for complex lesions is still technically demanding and is associated with less favorable procedural parameters such as lower success rate, longer procedural time, higher contrast volume and unexpected complications. Because the conventional angiographic analysis is limited by the inability to visualize the plaque information and the occluded segment, cardiac computed tomography has evolved as an adjunct to invasive angiography to better characterize coronary lesions to improve success rates of PCI. Adding to routine image reconstructions by coronary computed tomography angiography, the thin-slab maximum intensity projection method, which is a handy reconstruction technique on an ordinary workstation, could provide easy-to-understand images to reveal the anatomical characteristics and the lumen and plaque information simultaneously, and then assist to build an in-depth strategy for PCI. Especially in the treatment of chronic total occlusion lesion, these informations have big advantages in the visualization of the morphologies of entry and exit, the occluded segment and the distribution of calcium compared to invasive coronary angiography. Despite of the additional radiation exposure, contrast use and cost for cardiac computed tomography, the precise analysis of lesion characteristics would consequently improve the procedural success and prevent the complication in complex PCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weigold WG, Abbara S, Achenbach S, Arbab-Zadeh A, Berman D, Carr JJ, et al. Standardized medical terminology for cardiac computed tomography: a report of the Society of Cardiovascular Computed Tomography. J Cardiovasc Comput Tomogr. 2011;5:136–44. https://doi.org/10.1016/j.jcct.2011.04.004.

    Article  PubMed  Google Scholar 

  2. Knuuti J, Wijns W, Achenbach S, Agewall S, Barbato E, Bax JJ, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41:407–77. https://doi.org/10.1093/eurheartj/ehz425.

    Article  PubMed  Google Scholar 

  3. Koo B-K, Erglis A, Doh J-H, Daniels DV, Jegere S, Kim H-S, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. J Am Coll Cardiol. 2011;58:1989–97. https://doi.org/10.1016/j.jacc.2011.06.066.

    Article  PubMed  Google Scholar 

  4. Kuwahara N, Tanabe Y, Kido T, Kurata A, Uetani T, Ochi H, et al. Coronary artery stenosis-related perfusion ratio using dynamic computed tomography myocardial perfusion imaging: a pilot for identification of hemodynamically significant coronary artery disease. Cardiovasc Interv Ther. 2020;35:327–35. https://doi.org/10.1007/s12928-019-00627-4.

    Article  PubMed  CAS  Google Scholar 

  5. Sadamatsu K, Nagaoka K, Koga Y, Kagiyama K, Muramatsu K, Hironaga K, et al. The functional severity assessment of coronary stenosis using coronary computed tomography angiography-based myocardial mass at risk and minimal lumen diameter. Cardiovasc Ther. 2020. https://doi.org/10.1155/2020/6716130.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Collet C, Onuma Y, Andreini D, Sonck J, Pompilio G, Mushtaq S, et al. Coronary computed tomography angiography for heart team decision-making in multivessel coronary artery disease. Eur Heart J. 2018;39:3689–98. https://doi.org/10.1093/eurheartj/ehy581.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Newby DE, Adamson PD, Berry C, Boon NA, Dweck MR, Flather M, et al. Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med. 2018;379:924–33. https://doi.org/10.1056/NEJMoa1805971.

    Article  PubMed  Google Scholar 

  8. Brilakis ES, Mashayekhi K, Tsuchikane E, Abi Rafeh N, Alaswad K, Araya M, et al. Guiding principles for chronic total occlusion percutaneous coronary intervention: a global expert consensus document. Circulation. 2019;140:420–33. https://doi.org/10.1161/CIRCULATIONAHA.119.039797.

    Article  PubMed  Google Scholar 

  9. Riley RF, Henry TD, Mahmud E, Kirtane AJ, Brilakis ES, Goyal A, et al. <scp>SCAI</scp> position statement on optimal percutaneous coronary interventional therapy for complex coronary artery disease. Catheter Cardiovasc Interv. 2020;96:346–62. https://doi.org/10.1002/ccd.28994.

    Article  PubMed  Google Scholar 

  10. Werner GS. Use of coronary computed tomographic angiography to facilitate percutaneous coronary intervention of chronic total occlusions. Circ Cardiovasc Interv. 2019;12:1–9. https://doi.org/10.1161/CIRCINTERVENTIONS.119.007387.

    Article  Google Scholar 

  11. Velagapudi P, Abbott JD, Mamas M, Blankstein R, Chatzizisis YS, Brilakis ES, et al. Role of coronary computed tomography angiography in percutaneous coronary intervention of chronic total occlusions. Curr Cardiovasc Imaging Rep. 2020;13:20. https://doi.org/10.1007/s12410-020-09541-3.

    Article  Google Scholar 

  12. Linde JJ, Kelbæk H, Hansen TF, Sigvardsen PE, Torp-Pedersen C, Bech J, et al. Coronary CT angiography in patients with non-ST-segment elevation acute coronary syndrome. J Am Coll Cardiol. 2020;75:453–63. https://doi.org/10.1016/j.jacc.2019.12.012.

    Article  PubMed  Google Scholar 

  13. Pregowski J, Kepka C, Kruk M, Mintz GS, Kalinczuk L, Ciszewski M, et al. Comparison of usefulness of percutaneous coronary intervention guided by angiography plus computed tomography versus angiography alone using intravascular ultrasound end points. Am J Cardiol. 2011;108:1728–34. https://doi.org/10.1016/j.amjcard.2011.07.043.

    Article  PubMed  Google Scholar 

  14. Kawasaki T, Koga H, Serikawa T, Orita Y, Ikeda S, Mito T, et al. The bifurcation study using 64 multislice computed tomography. Catheter Cardiovasc Interv. 2009;73:653–8. https://doi.org/10.1002/ccd.21916.

    Article  PubMed  Google Scholar 

  15. Patel AR, Bamberg F, Branch K, Carrascosa P, Chen M, Cury RC, et al. Society of cardiovascular computed tomography expert consensus document on myocardial computed tomography perfusion imaging. J Cardiovasc Comput Tomogr. 2020;14:87–100. https://doi.org/10.1016/j.jcct.2019.10.003.

    Article  PubMed  Google Scholar 

  16. Jinzaki M, Sato K, Tanami Y, Yamada M, Kuribayashi S, Anzai T, et al. Novel method of displaying coronary CT angiography. Circ J. 2006;70:1661–2. https://doi.org/10.1253/circj.70.1661.

    Article  PubMed  Google Scholar 

  17. Jinzaki M, Yamada M, Sato K, Tanami Y, Anzai T, Sasaki K, et al. Overview image of the lumen and vessel wall in coronary CT angiography. Circ J. 2007;72:671–3. https://doi.org/10.1253/circj.72.671.

    Article  Google Scholar 

  18. Okutsu M, Horio T, Tanaka H, Akiyama M, Okimoto N, Tsubouchi T, et al. Predictive performance of dual modality of computed tomography angiography and intravascular ultrasound for no-reflow phenomenon after percutaneous coronary stenting in stable coronary artery disease. Heart Vessels. 2018;33:1121–8. https://doi.org/10.1007/s00380-018-1160-2.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Choi JW, Seo JB, Do KH, Choi SII, Lee W, Ko SM, et al. Comparison of transaxial source images and 3-plane, thin-slab maximal intensity projection images for the diagnosis of coronary artery stenosis with using ECG-gated cardiac CT. Korean J Radiol. 2006;7:20–7. https://doi.org/10.3348/kjr.2006.7.1.20.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kočka V, Thériault-Lauzier P, Xiong T-Y, Ben-Shoshan J, Petr R, Laboš M, et al. Optimal fluoroscopic projections of coronary ostia and bifurcations defined by computed tomographic coronary angiography. JACC Cardiovasc Interv. 2020;13:2560–70. https://doi.org/10.1016/j.jcin.2020.06.042.

    Article  PubMed  Google Scholar 

  21. Magro M, Schultz C, Simsek C, Garcia-Garcia HM, Regar E, Nieman K, et al. Computed tomography as a tool for percutaneous coronary intervention of chronic total occlusions. EuroIntervention. 2010;6:123–31.

    Article  Google Scholar 

  22. Wolny R, Pregowski J, Kruk M, Kepka C, Mintz GS, Toth GG, et al. Computed tomography angiography versus angiography for guiding percutaneous coronary interventions in bifurcation lesions—a prospective randomized pilot study. J Cardiovasc Comput Tomogr. 2017;11:119–28. https://doi.org/10.1016/j.jcct.2017.01.002.

    Article  PubMed  Google Scholar 

  23. Sadamatsu K, Sagara S, Yamawaki T, Tashiro H. Three-dimensional coronary imaging for the ostium of the left anterior descending artery. Int J Cardiovasc Imaging. 2009;25:223–8. https://doi.org/10.1007/s10554-008-9385-2.

    Article  PubMed  Google Scholar 

  24. Goto Y, Kawasaki T, Koga N, Tanaka H, Koga H, Orita Y, et al. Plaque distribution patterns in left main trunk bifurcations: prediction of branch vessel compromise by multidetector row computed topography after percutaneous coronary intervention. EuroIntervention. 2012;8:708–16. https://doi.org/10.4244/EIJV8I6A110.

    Article  Google Scholar 

  25. Lee S-H, Lee JM, Bin SY, Park TK, Yang JH, Hahn J-Y, et al. Prediction of side branch occlusions in percutaneous coronary interventions by coronary computed tomography: the CT bifurcation score as a novel tool for predicting intraprocedural side branch occlusion. EuroIntervention. 2019;15:e788-795. https://doi.org/10.4244/eij-d-18-00113.

    Article  PubMed  Google Scholar 

  26. Opolski MP, Grodecki K, Staruch AD, Michalowska AM, Kepka C, Wolny R, et al. Accuracy of RESOLVE score derived from coronary computed tomography versus visual angiography to predict side branch occlusion in percutaneous bifurcation intervention. J Cardiovasc Comput Tomogr. 2020;14:258–65. https://doi.org/10.1016/j.jcct.2019.11.007.

    Article  PubMed  Google Scholar 

  27. Kim HY, Doh J-H, Lim H-S, Nam C-W, Shin E-S, Koo B-K, et al. Identification of coronary artery side branch supplying myocardial mass that may benefit from revascularization. JACC Cardiovasc Interv. 2017;10:571–81. https://doi.org/10.1016/j.jcin.2016.11.033.

    Article  PubMed  Google Scholar 

  28. Jeon WK, Park J, Koo B-K, Suh M, Yang S, Kim HY, et al. Anatomical attributes of clinically relevant diagonal branches in patients with left anterior descending coronary artery bifurcation lesions. EuroIntervention. 2020;16:e715–23. https://doi.org/10.4244/EIJ-D-19-00534.

    Article  PubMed  Google Scholar 

  29. Watanabe M, Okura H, Okamura A, Iwai S, Keshi A, Kamon D, et al. Usefulness of longitudinal reconstructed optical coherence tomography images for predicting the need for the reverse wire technique during coronary bifurcation interventions. Catheter Cardiovasc Interv. 2019. https://doi.org/10.1002/ccd.27981.

    Article  PubMed  Google Scholar 

  30. Yu C-W, Lee H-J, Suh J, Lee N-H, Park S-M, Park TK, et al. Coronary computed tomography angiography predicts guidewire crossing and success of percutaneous intervention for chronic total occlusion. Circ Cardiovasc Imaging. 2017;10:e005800. https://doi.org/10.1161/CIRCIMAGING.116.005800.

    Article  PubMed  Google Scholar 

  31. Kodama T, Kondo T, Oida A, Fujimoto S, Narula J. Computed tomographic angiography-verified plaque characteristics and slow-flow phenomenon during percutaneous coronary intervention. JACC Cardiovasc Interv. 2012;5:636–43. https://doi.org/10.1016/j.jcin.2012.02.016.

    Article  PubMed  Google Scholar 

  32. Sato A, Kijima M, Ichimura S, Yaegashi D, Anzai F, Shimizu T, et al. Short-term outcome of percutaneous coronary intervention with directional coronary atherectomy followed by drug-coated balloon: a preliminary report. Cardiovasc Interv Ther. 2019;34:149–54. https://doi.org/10.1007/s12928-018-0537-6.

    Article  PubMed  CAS  Google Scholar 

  33. Okura H, Taguchi H, Kubo T, Toda I, Yoshida K, Yoshiyama M, et al. Atherosclerotic plaque with ultrasonic attenuation affects coronary reflow and infarct size in patients with acute coronary syndrome. Circ J. 2007;71:648–53. https://doi.org/10.1253/circj.71.648.

    Article  PubMed  Google Scholar 

  34. Wu X, Mintz GS, Xu K, Lansky AJ, Witzenbichler B, Guagliumi G, et al. The relationship between attenuated plaque identified by intravascular ultrasound and no-reflow after stenting in acute myocardial infarction. JACC Cardiovasc Interv. 2011;4:495–502. https://doi.org/10.1016/j.jcin.2010.12.012.

    Article  PubMed  Google Scholar 

  35. Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50:319–26. https://doi.org/10.1016/j.jacc.2007.03.044.

    Article  PubMed  Google Scholar 

  36. Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49–57. https://doi.org/10.1016/j.jacc.2009.02.068.

    Article  PubMed  Google Scholar 

  37. Yamamoto H, Kitagawa T, Ohashi N, Utsunomiya H, Kunita E, Oka T, et al. Noncalcified atherosclerotic lesions with vulnerable characteristics detected by coronary CT angiography and future coronary events. J Cardiovasc Comput Tomogr. 2013;7:192–9. https://doi.org/10.1016/j.jcct.2013.05.008.

    Article  PubMed  Google Scholar 

  38. Motoyama S, Ito H, Sarai M, Kondo T, Kawai H, Nagahara Y, et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up. J Am Coll Cardiol. 2015;66:337–46. https://doi.org/10.1016/j.jacc.2015.05.069.

    Article  PubMed  Google Scholar 

  39. Otsuka K, Fukuda S, Tanaka A, Nakanishi K, Taguchi H, Yoshikawa J, et al. Napkin-ring sign on coronary CT angiography for the prediction of acute coronary syndrome. JACC Cardiovasc Imaging. 2013;6:448–57. https://doi.org/10.1016/j.jcmg.2012.09.016.

    Article  PubMed  Google Scholar 

  40. Harigaya H, Motoyama S, Sarai M, Inoue K, Hara T, Okumura M, et al. Prediction of the no-reflow phenomenon during percutaneous coronary intervention using coronary computed tomography angiography. Heart Vessels. 2011;26:363–9. https://doi.org/10.1007/s00380-010-0059-3.

    Article  PubMed  Google Scholar 

  41. Nakazawa G, Tanabe K, Onuma Y, Yachi S, Aoki J, Yamamoto H, et al. Efficacy of culprit plaque assessment by 64-slice multidetector computed tomography to predict transient no-reflow phenomenon during percutaneous coronary intervention. Am Heart J. 2008;155:1150–7. https://doi.org/10.1016/j.ahj.2008.01.006.

    Article  PubMed  Google Scholar 

  42. Watabe H, Sato A, Akiyama D, Kakefuda Y, Adachi T, Ojima E, et al. Impact of coronary plaque composition on cardiac troponin elevation after percutaneous coronary intervention in stable angina pectoris: a computed tomography analysis. J Am Coll Cardiol. 2012;59:1881–8. https://doi.org/10.1016/j.jacc.2012.01.051.

    Article  PubMed  CAS  Google Scholar 

  43. Galassi AR, Tomasello SD, Reifart N, Werner GS, Sianos G, Bonnier H, et al. In-hospital outcomes of percutaneous coronary intervention in patients with chronic total occlusion: Insights from the ERCTO (European Registry of Chronic Total Occlusion) registry. EuroIntervention. 2011;7:472–9. https://doi.org/10.4244/EIJV7I4A77.

    Article  PubMed  Google Scholar 

  44. Morino Y, Abe M, Morimoto T, Kimura T, Hayashi Y, Muramatsu T, et al. Predicting successful guidewire crossing through chronic total occlusion of native coronary lesions within 30 minutes. JACC Cardiovasc Interv. 2011;4:213–21. https://doi.org/10.1016/j.jcin.2010.09.024.

    Article  PubMed  Google Scholar 

  45. Karmpaliotis D, Michael TT, Brilakis ES, Papayannis AC, Tran DL, Kirkland BL, et al. Retrograde coronary chronic total occlusion revascularization: procedural and in-hospital outcomes from a multicenter registry in the United States. JACC Cardiovasc Interv. 2012;5:1273–9. https://doi.org/10.1016/j.jcin.2012.06.025.

    Article  PubMed  Google Scholar 

  46. Suzuki Y, Tsuchikane E, Katoh O, Muramatsu T, Muto M, Kishi K, et al. Outcomes of percutaneous coronary interventions for chronic total occlusion performed by highly experienced Japanese specialists: the first report from the Japanese CTO-PCI Expert Registry. JACC Cardiovasc Interv. 2017;10:2144–54. https://doi.org/10.1016/j.jcin.2017.06.024.

    Article  PubMed  Google Scholar 

  47. Konstantinidis NV, Werner GS, Deftereos S, Di Mario C, Galassi AR, Buettner JH, et al. Temporal trends in chronic total occlusion interventions in Europe: 17626 procedures from the European Registry of Chronic total occlusion. Circ Cardiovasc Interv. 2018;11:1–11. https://doi.org/10.1161/CIRCINTERVENTIONS.117.006229.

    Article  Google Scholar 

  48. Rolf A, Werner GS, Schuhbäck A, Rixe J, Möllmann H, Nef HM, et al. Preprocedural coronary CT angiography significantly improves success rates of PCI for chronic total occlusion. Int J Cardiovasc Imaging. 2013;29:1819–27. https://doi.org/10.1007/s10554-013-0258-y.

    Article  PubMed  Google Scholar 

  49. Luo C, Huang M, Li J, Liang C, Zhang Q, Liu H, et al. Predictors of interventional success of antegrade PCI for CTO. JACC Cardiovasc Imaging. 2015;8:804–13. https://doi.org/10.1016/j.jcmg.2015.04.008.

    Article  PubMed  Google Scholar 

  50. Opolski MP, Achenbach S, Schuhbäck A, Rolf A, Möllmann H, Nef H, et al. Coronary computed tomographic prediction rule for time-efficient guidewire crossing through chronic total occlusion: Insights from the CT-RECTOR multicenter registry (computed tomography registry of chronic total occlusion revascularization). JACC Cardiovasc Interv. 2015;8:257–67. https://doi.org/10.1016/j.jcin.2014.07.031.

    Article  PubMed  Google Scholar 

  51. Fujino A, Otsuji S, Hasegawa K, Arita T, Takiuchi S, Fujii K, et al. Accuracy of J-CTO score derived from computed tomography versus angiography to predict successful percutaneous coronary intervention. JACC Cardiovasc Imaging. 2018;11:209–17. https://doi.org/10.1016/j.jcmg.2017.01.028.

    Article  PubMed  Google Scholar 

  52. Kaneda H, Saito S, Shiono T, Miyashita Y, Takahashi S, Domae H. Sixty-four-slice computed tomography-facilitated percutaneous coronary intervention for chronic total occlusion. Int J Cardiol. 2007;115:130–2. https://doi.org/10.1016/j.ijcard.2006.01.045.

    Article  PubMed  Google Scholar 

  53. Tan Y, Zhou J, Zhang W, Zhou Y, Du L, Tian F, et al. Comparison of CT-RECTOR and J-CTO scores to predict chronic total occlusion difficulty for percutaneous coronary intervention. Int J Cardiol. 2017;235:169–75. https://doi.org/10.1016/j.ijcard.2017.02.008.

    Article  PubMed  Google Scholar 

  54. Abdelmoneim I, Sadek A, Mosaad MA, Yassin I, Radwan Y, Shokry K, et al. Diagnostic accuracy of multi-slice computed tomography in identifying lesion characteristics in coronary total occlusion. Int J Cardiovasc Imaging. 2018;34:1813–8. https://doi.org/10.1007/s10554-018-1392-3.

    Article  PubMed  Google Scholar 

  55. Li M, Zhang J, Pan J, Lu Z. Coronary total occlusion lesions: linear intrathrombus enhancement at CT predicts better outcome of percutaneous coronary intervention. Radiology. 2013;266:443–51. https://doi.org/10.1148/radiol.12120961.

    Article  PubMed  Google Scholar 

  56. Li M, Zhang J, Pan J, Lu Z. Obstructive coronary artery disease: reverse attenuation gradient sign at CT indicates distal retrograde flow—a useful sign for differentiating chronic total occlusion from subtotal occlusion. Radiology. 2013;266:766–72. https://doi.org/10.1148/radiol.12121294.

    Article  PubMed  Google Scholar 

  57. Yamamoto MH, Maehara A, Poon M, Guo J, Yamashita K, Yakushiji T, et al. Morphological assessment of chronic total occlusions by combined coronary computed tomographic angiography and intravascular ultrasound imaging. Eur Heart J Cardiovasc Imaging. 2017;18:315–22. https://doi.org/10.1093/ehjci/jew077.

    Article  PubMed  Google Scholar 

  58. García-García HM, Van Mieghem CAG, Gonzalo N, Meijboom WB, Weustink AC, Onuma Y, et al. Computed tomography in total coronary occlusions (CTTO Registry): radiation exposure and predictors of successful percutaneous intervention. EuroIntervention. 2009;4:607–16. https://doi.org/10.4244/EIJV4I5A102.

    Article  PubMed  Google Scholar 

  59. Cho JR, Kim YJ, Ahn CM, Moon JY, Kim JS, Kim HS, et al. Quantification of regional calcium burden in chronic total occlusion by 64-slice multi-detector computed tomography and procedural outcomes of percutaneous coronary intervention. Int J Cardiol. 2010;145:9–14. https://doi.org/10.1016/j.ijcard.2009.05.006.

    Article  PubMed  Google Scholar 

  60. Te HJ, Kyo E, Chu CM, Tsuji T, Watanabe S. Impact of calcification length ratio on the intervention for chronic total occlusions. Int J Cardiol. 2011;150:135–41. https://doi.org/10.1016/j.ijcard.2010.03.002.

    Article  Google Scholar 

  61. Sumitsuji S, Inoue K, Ochiai M, Tsuchikane E, Ikeno F. Fundamental wire technique and current standard strategy of percutaneous intervention for chronic total occlusion with histopathological insights. JACC Cardiovasc Interv. 2011;4:941–51. https://doi.org/10.1016/j.jcin.2011.06.011.

    Article  PubMed  Google Scholar 

  62. Mahnken AH, Mühlenbruch G, Günther RW, Wildberger JE. Cardiac CT: coronary arteries and beyond. Eur Radiol. 2007;17:994–1008. https://doi.org/10.1007/s00330-006-0433-9.

    Article  PubMed  Google Scholar 

  63. Krombach GA, Niendorf T, Günther RW, Mahnken AH. Characterization of myocardial viability using MR and CT imaging. Eur Radiol. 2007;17:1433–44. https://doi.org/10.1007/s00330-006-0531-8.

    Article  PubMed  Google Scholar 

  64. Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to revise the 1995 guide l. J Am Coll Cardiol. 2003;42:1318–33. https://doi.org/10.1016/j.jacc.2003.08.011.

    Article  PubMed  Google Scholar 

  65. Safley DM, Koshy S, Grantham JA, Bybee KA, House JA, Kennedy KF, et al. Changes in myocardial ischemic burden following percutaneous coronary intervention of chronic total occlusions. Catheter Cardiovasc Interv. 2011;78:337–43. https://doi.org/10.1002/ccd.23002.

    Article  PubMed  Google Scholar 

  66. Yu M, Lu Z, Shen C, Yan J, Wang Y, Lu B, et al. The best predictor of ischemic coronary stenosis: subtended myocardial volume, machine learning–based FFRCT, or high-risk plaque features? Eur Radiol. 2019;29:3647–57. https://doi.org/10.1007/s00330-019-06139-2.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank our colleagues at Cardiac CT for interventionists conference.

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Sadamatsu.

Ethics declarations

Conflict of interest

Satoru Sumitsuji reports remuneration for lectures from Canon Medical, and Fujifilm Medical. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadamatsu, K., Okutsu, M., Sumitsuji, S. et al. Practical utilization of cardiac computed tomography for the success in complex coronary intervention. Cardiovasc Interv and Ther 36, 178–189 (2021). https://doi.org/10.1007/s12928-020-00751-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12928-020-00751-6

Keywords

Navigation