Skip to main content
Log in

Impact of stent length on clinical outcomes of first-generation and new-generation drug-eluting stents

  • Original Article
  • Published:
Cardiovascular Intervention and Therapeutics Aims and scope Submit manuscript

Abstract

The aim of this study is to compare first- and new-generation drug-eluting stents (DESs) which are implanted in long lesion. Stent length is known to be a predictor of adverse events after percutaneous coronary intervention (PCI), even with the first-generation DESs. The introduction of new-generation DESs has reduced the rates of adverse clinical events. However, the impact of stent length on long-term clinical outcomes is not well known. A total of 1181 consecutive patients who underwent PCI using either a first-generation DES (n = 885) or a new-generation DES (n = 296) between 2004 and 2011 were investigated. In each of the stent groups, the patients were divided into two groups by stent length (>32 and ≤32 mm) and compared. During the follow-up period, the incidence of major adverse cardiac events (MACEs) was significantly higher for patients with long stents implanted than with short stents (P < 0.01; log-rank test) in the first-generation DES group. However, there was no difference in the incidence of MACEs between the long- and short-stent groups in the new-generation DES group (P = 0.24; log-rank test). On multivariate Cox regression analysis, stent length was not associated with adverse events in the new-generation DES groups [hazard ratio (HR) 0.87; 95 % confidence interval (95 % CI) 0.71–1.04; P = 0.14]. Implanted stent length was significantly associated with a higher risk of MACEs in patients who received first-generation DESs, but not in patients who received the new-generation DESs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Morice MC, Serruys PW, Sousa JE, Fajadet J, Ban Hayashi E, Perin M, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med. 2002;346:1773–80.

    Article  CAS  PubMed  Google Scholar 

  2. Stone GW, Ellis SG, Cox DA, Hermiller J, O’Shaughnessy C, Mann JT, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med. 2004;350:221–31.

    Article  CAS  PubMed  Google Scholar 

  3. Stone GW, Moses JW, Ellis SG, Schofer J, Dawkins KD, Morice MC, et al. Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N Engl J Med. 2007;356:998–1008.

    Article  CAS  PubMed  Google Scholar 

  4. Yoon HJ, Hur SH. Optimization of stent deployment by intravascular ultrasound. Korean J Intern Med. 2012;27(1):30–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Morino Y, Tamiya S, Masuda N, Kawamura Y, Nagaoka M, Matsukage T, et al. Intravascular ultrasound criteria for determination of optimal longitudinal positioning of sirolimus-eluting stents. Circ J. 2010;74:1609–16.

    Article  PubMed  Google Scholar 

  6. Daemen J, Wenaweser P, Tsuchida K, Abrecht L, Vaina S, Morger C, et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet. 2007;369:667–78.

    Article  CAS  PubMed  Google Scholar 

  7. Harjai KJ, Kondareddy S, Pinkosky B, Harjai N, Orshaw P, Boura J. Everolimus-eluting stents versus sirolimus- or paclitaxel-eluting stents: two-year results from the Guthrie Health Off-Label Stent (GHOST) registry. J Interv Cardiol. 2013;26:153–62.

    Article  PubMed  Google Scholar 

  8. Stone GW, Rizvi A, Newman W, Mastali K, Wang JC, Caputo R, et al. Everolimus-eluting versus paclitaxel-eluting stents in coronary artery disease. N Engl J Med. 2010;362:1663–74.

    Article  CAS  PubMed  Google Scholar 

  9. Thygesen K, Alpert JS, White HD, Jaffe AS, Apple FS, Galvani M, et al. Universal definition of myocardial infarction. Circulation. 2007;116:2634–53.

    Article  PubMed  Google Scholar 

  10. Jaffe AS, Ravkilde J, Roberts R, Naslund U, Apple FS, Galvani M, et al. It’s time for a change to a troponin standard. Circulation. 2000;102:1216–20.

    Article  CAS  PubMed  Google Scholar 

  11. Cannon CP, Brindis RG, Chaitman BR, Cohen DJ, Cross JT Jr, Drozda JP Jr, et al. 2013 ACCF/AHA key data elements and definitions for measuring the clinical management and outcomes of patients with acute coronary syndromes and coronary artery disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Acute Coronary Syndromes and Coronary Artery Disease Clinical Data Standards). Circulation. 2013;127:1052–89.

    Article  PubMed  Google Scholar 

  12. Lee SW, Park SW, Kim YH, Yun SC, Park DW, Lee CW, et al. Comparison of triple versus dual antiplatelet therapy after drug-eluting stent implantation (from the DECLARE-Long trial). Am J Cardiol. 2007;100:1103–8.

    Article  CAS  PubMed  Google Scholar 

  13. Suh J, Park DW, Lee JY, Jung IH, Lee SW, Kim YH, et al. The relationship and threshold of stent length with regard to risk of stent thrombosis after drug-eluting stent implantation. JACC Cardiovasc Interv. 2010;3:383–9.

    Article  PubMed  Google Scholar 

  14. Kobayashi Y, De Gregorio J, Kobayashi N, Akiyama T, Reimers B, Finci L, et al. Stented segment length as an independent predictor of restenosis. J Am Coll Cardiol. 1999;34:651–9.

    Article  CAS  PubMed  Google Scholar 

  15. Kastrati A, Elezi S, Dirschinger J, Hadamitzky M, Neumann FJ, Schomig A. Influence of lesion length on restenosis after coronary stent placement. Am J Cardiol. 1999;83:1617–22.

    Article  CAS  PubMed  Google Scholar 

  16. Colombo A, De Gregorio J, Moussa I, Kobayashi Y, Karvouni E, Di Mario C, et al. Intravascular ultrasound-guided percutaneous transluminal coronary angioplasty with provisional spot stenting for treatment of long coronary lesions. J Am Coll Cardiol. 2001;38:1427–33.

    Article  CAS  PubMed  Google Scholar 

  17. Park DW, Kim YH, Song HG, Ahn JM, Kim WJ, Lee JY, et al. Comparison of everolimus- and sirolimus-eluting stents in patients with long coronary artery lesions: a randomized LONG-DES-III (Percutaneous Treatment of LONG Native Coronary Lesions With Drug-Eluting Stent-III) Trial. JACC Cardiovasc Interv. 2011;4:1096–103.

    Article  PubMed  Google Scholar 

  18. Stone GW, Rizvi A, Sudhir K, Newman W, Applegate RJ, Cannon LA, et al. Randomized comparison of everolimus- and paclitaxel-eluting stents. 2-year follow-up from the SPIRIT (Clinical Evaluation of the XIENCE V Everolimus Eluting Coronary Stent System) IV trial. J Am Coll Cardiol. 2011;58:19–25.

    Article  PubMed  Google Scholar 

  19. Caputo RP, Goel A, Pencina M, Cohen DJ, Kleiman NS, Yen CH, et al. Impact of drug eluting stent length on outcomes of percutaneous coronary intervention (from the EVENT registry). Am J Cardiol. 2012;110:350–5.

    Article  PubMed  Google Scholar 

  20. Shirai S, Kimura T, Nobuyoshi M, Morimoto T, Ando K, Soga Y, et al. Impact of multiple and long sirolimus-eluting stent implantation on 3-year clinical outcomes in the j-Cypher Registry. JACC Cardiovasc Interv. 2010;3:180–8.

    Article  PubMed  Google Scholar 

  21. Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, et al. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation. 2011;124:e574–651.

    Article  PubMed  Google Scholar 

  22. Ahn JM, Kang SJ, Yoon SH, Park HW, Kang SM, Lee JY, et al. Meta-analysis of outcomes after intravascular ultrasound-guided versus angiography-guided drug-eluting stent implantation in 26,503 patients enrolled in three randomized trials and 14 observational studies. Am J Cardiol. 2014;113:1338–47.

    Article  PubMed  Google Scholar 

  23. Witzenbichler B, Maehara A, Weisz G, Neumann FJ, Rinaldi MJ, Metzger DC, et al. Relationship between intravascular ultrasound guidance and clinical outcomes after drug-eluting stents: the assessment of dual antiplatelet therapy with drug-eluting stents (ADAPT-DES) study. Circulation. 2014;129:463–70.

    Article  CAS  PubMed  Google Scholar 

  24. Briguori C, Sarais C, Pagnotta P, Liistro F, Montorfano M, Chieffo A, et al. In-stent restenosis in small coronary arteries: impact of strut thickness. J Am Coll Cardiol. 2002;40:403–9.

    Article  PubMed  Google Scholar 

  25. Kastrati A, Mehilli J, Dirschinger J, Dotzer F, Schuhlen H, Neumann FJ, et al. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation. 2001;103:2816–21.

    Article  CAS  PubMed  Google Scholar 

  26. Hasebe T, Shimada A, Suzuki T, Matsuoka Y, Saito T, Yohena S, et al. Fluorinated diamond-like carbon as antithrombogenic coating for blood-contacting devices. J Biomed Mater Res A. 2006;76:86–94.

    Article  PubMed  Google Scholar 

  27. Sheehy A, Hsu S, Bouchard A, Lema P, Savard C, Guy LG, et al. Comparative vascular responses three months after paclitaxel and everolimus-eluting stent implantation in streptozotocin-induced diabetic porcine coronary arteries. Cardiovasc Diabetol. 2012;11:75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Joner M, Nakazawa G, Finn AV, Quee SC, Coleman L, Acampado E, et al. Endothelial cell recovery between comparator polymer-based drug-eluting stents. J Am Coll Cardiol. 2008;52:333–42.

    Article  CAS  PubMed  Google Scholar 

  29. Finn AV, Kolodgie FD, Harnek J, Guerrero LJ, Acampado E, Tefera K, et al. Differential response of delayed healing and persistent inflammation at sites of overlapping sirolimus- or paclitaxel-eluting stents. Circulation. 2005;112:270–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant-in aid for scientific research from the Ministry of Health, Labour and Welfare (23591063). The authors gratefully acknowledge Ms. Yumi Nozawa and Ms. Ayako Onodera for data collection and management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsumi Miyauchi.

Ethics declarations

Conflict of interest

None.

Human rights statement

Ethics approval was obtained from Juntendo University ethics committee.

Informed consent

Informed consent was obtained from all patients.

Declarations

There are no relationships with industry that could influence the impartiality of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konishi, H., Miyauchi, K., Dohi, T. et al. Impact of stent length on clinical outcomes of first-generation and new-generation drug-eluting stents. Cardiovasc Interv and Ther 31, 114–121 (2016). https://doi.org/10.1007/s12928-015-0362-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12928-015-0362-0

Keywords

Navigation