Skip to main content
Log in

Variations in measurement for ultraviolet-B sensitivity in crops: a need for standardization

  • Review Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Ultraviolet-B (UVB) radiation is an environmental factor that can cause crop plants to experience stress-related reactions that affect their growth, development, and productivity. For comprehending plant responses and the creation of effective mitigation plans, accurate measurements and evaluations of UVB sensitivity on crops are essential. Disparities in reported UVB sensitivity levels can result from differences in measurement methods and techniques. The methods used to measure UVB sensitivity in crops today are, however, still largely unknown. This review present current various measurement techniques for determining UVB sensitivity in crops. There is wide range of UVB sensitivity measurement methodologies, including by looking at cyclobutane pyrimidine dimer (CPD) photolyase activity, DNA damage repair, gene expression, and antioxidant capacity. These variations are brought on by experimental setups, including light sources, exposure times, and growth conditions. This study emphasizes the requirement for standardization and agreement on measurement protocols to guarantee an accurate evaluation of UVB stress in crop plants. This study will deepen our comprehension of the effects of UVB stress and offer practical solutions to reduce UVB sensitivity and protect crop productivity in climate change, which could increase crop yield and productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  • Alexandru Suchar V, Robberecht R (2018) Integration and scaling of UV-B radiation effects on plants: the relative sensitivity of growth forms and interspecies interactions. J Plant Ecol 11:656–670

    Article  Google Scholar 

  • Alici EH, Arabaci G (2016) Determination of SOD, POD, PPO and cat enzyme activities in Rumex obtusifolius L. Annu Res Rev Biol 11(3):1–7

    Article  Google Scholar 

  • Azqueta A, Slyskova J, Langie SAS et al (2014) Comet assay to measure DNA repair: approach and applications. Front Genet 5:288

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes PW, Flint SD, Caldwell MM (1990) Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation. Am J Bot 77:1354–1360

    Article  Google Scholar 

  • Bela K, Horváth E, Gallé Á et al (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201

    Article  CAS  PubMed  Google Scholar 

  • Bertram L, Lercari B (2000) Evidence against the involvement of phytochrome in UVB-induced inhibition of stem growth in green tomato plants. Photosynth Res 64:107–117

    Article  CAS  PubMed  Google Scholar 

  • Brenna H, Kutterolf S, Krüger K (2019) Global ozone depletion and increase of UV radiation caused by pre-industrial tropical volcanic eruptions. Sci Rep 9:9435

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Britt AB (1996) DNA damage and repair in plants. Annu Rev Plant Biol 47:75–100

    Article  CAS  Google Scholar 

  • Britt AB (2004) Repair of DNA damage induced by solar UV. Photosynth Res 81:105–112

    Article  ADS  CAS  Google Scholar 

  • Brosché M, Strid Å (2003) Molecular events following perception of ultraviolet-B radiation by plants. Physiol Plant 117:1–10

    Article  Google Scholar 

  • Brosché M, Schuler MA, Kalbina I et al (2002) Gene regulation by low level UV-B radiation: identification by DNA array analysis. Photochem Photobiol Sci 1:656–664

    Article  PubMed  Google Scholar 

  • Canturk F, Karaman M, Selby CP et al (2016) Nucleotide excision repair by dual incisions in plants. Proc Natl Acad Sci 113:4706–4710

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Casadevall R, Rodriguez RE, Debernardi JM, Palatnik JF, Casati P (2013) Repression of growth regulating factors by the microRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves. Plant Cell 25(9):3570–3583. https://doi.org/10.1105/tpc.113.117473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casati P, Walbot V (2003) Gene expression profiling in response to ultraviolet radiation in maize genotypes with varying flavonoid content. Plant Physiol 132:1739–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casati P, Walbot V (2004) Rapid transcriptome responses of maize (Zea mays) to UV-B in irradiated and shielded tissues. Genome Biol 5:1–9

    Article  Google Scholar 

  • Chen T, Peng J, Qian M et al (2023) The effects of enhanced ultraviolet-B radiation on leaf photosynthesis and submicroscopic structures in Mangifera indica L. cv.‘Tainong No 1.’ Horticulturae 9:83

    Article  Google Scholar 

  • Chu R, Zhang Q, Wei Y (2022) Effect of enhanced UV-B radiation on growth and photosynthetic physiology of Iris tectorum maxim. Photosynth Res 153:177–189

    Article  CAS  PubMed  Google Scholar 

  • Correa MDSS, Saavedra MERR, Parra EAE et al (2023) Ultraviolet radiation and its effects on plants. Abiotic stress in plants-adaptations to climate change. IntechOpen, London

    Google Scholar 

  • Cramp RL, Reid S, Seebacher F, Franklin CE (2014) Synergistic interaction between UVB radiation and temperature increases susceptibility to parasitic infection in a fish. Biol Lett 10:20140449

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai Q, Shaobing P, Chavez AQ, Vergara BS (1994) Intraspecific responses of 188 rice cultivars to enhanced UVB radiation. Environ Exp Bot 34:433–442

    Article  Google Scholar 

  • Dany AL, Douki T, Triantaphylides C, Cadet J (2001) Repair of the main UV-induced thymine dimeric lesions within Arabidopsis thaliana DNA: evidence for the major involvement of photoreactivation pathways. J Photochem Photobiol B Biol 65:127–135

    Article  CAS  Google Scholar 

  • Dean JC, Kusaka R, Walsh PS et al (2014) Plant sunscreens in the UV-B: ultraviolet spectroscopy of jet-cooled sinapoyl malate, sinapic acid, and sinapate ester derivatives. J Am Chem Soc 136:14780–14795

    Article  CAS  PubMed  Google Scholar 

  • Del-Castillo-Alonso M-Á, Monforte L, Tomás-Las-Heras R et al (2020) A supplement of ultraviolet-B radiation under field conditions increases phenolic and volatile compounds of Tempranillo grape skins and the resulting wines. Eur J Agron 121:126150

    Article  CAS  Google Scholar 

  • Del Valle JC, Buide ML, Whittall JB et al (2020) UV radiation increases phenolic compound protection but decreases reproduction in Silene littorea. PLoS ONE 15:e0231611

    Article  PubMed  PubMed Central  Google Scholar 

  • Duarte-Sierra A, Hasan SMM, Angers P, Arul J (2020) UV-B radiation hormesis in broccoli florets: glucosinolates and hydroxy-cinnamates are enhanced by UV-B in florets during storage. Postharvest Biol Technol 168:111278

    Article  CAS  Google Scholar 

  • Emmert S, Kobayashi N, Khan SG, Kraemer KH (2000) The xeroderma pigmentosum group C gene leads to selective repair of cyclobutane pyrimidine dimers rather than 6-4 photoproducts. Proc Natl Acad Sci 97:2151–2156

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar-Bravo R, Klinkhamer PGL, Leiss KA (2017) Interactive effects of UV-B light with abiotic factors on plant growth and chemistry, and their consequences for defense against arthropod herbivores. Front Plant Sci 8:278

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng H, Li S, Xue L et al (2007) The interactive effects of enhanced UV-B radiation and soil drought on spring wheat. South African J Bot 73:429–434

    Article  Google Scholar 

  • Fierro AC, Leroux O, De Coninck B et al (2015) Ultraviolet-B radiation stimulates downward leaf curling in Arabidopsis thaliana. Plant Physiol Biochem 93:9–17

    Article  CAS  PubMed  Google Scholar 

  • Fina J, Casadevall R, AbdElgawad H et al (2017) UV-B inhibits leaf growth through changes in growth regulating factors and gibberellin levels. Plant Physiol 174:1110–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanizadeh Kazerouni E, Franklin CE, Seebacher F (2016) UV-B radiation interacts with temperature to determine animal performance. Funct Ecol 30:584–595

    Article  Google Scholar 

  • Gill SS, Anjum NA, Gill R et al (2015) DNA damage and repair in plants under ultraviolet and ionizing radiations. Sci World J. https://doi.org/10.1155/2015/250158

    Article  Google Scholar 

  • González Moreno A, de Cózar A, Prieto P et al (2022) Radiationless mechanism of UV deactivation by cuticle phenolics in plants. Nat Commun 13:1786

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Gorbe E, Calatayud A (2012) Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. Sci Hortic 138:24–35

    Article  CAS  Google Scholar 

  • Grote U, Fasse A, Nguyen TT, Erenstein O (2021) Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front Sustain Food Syst 4:617009

    Article  Google Scholar 

  • He L, He T, Farrar S et al (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44:532–553

    Article  PubMed  Google Scholar 

  • Hectors K, Prinsen E, De Coen W et al (2007) Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation show specific changes in morphology and gene expression in the absence of stress symptoms. New Phytol 175:255–270

    Article  CAS  PubMed  Google Scholar 

  • Heijde M, Ulm R (2012) UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci 17:230–237

    Article  CAS  PubMed  Google Scholar 

  • Hidema J, Kumagai T (2006) Sensitivity of rice to ultraviolet-B radiation. Ann Bot 97:933–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hidema J, Kumagai T, Sutherland BM (2000) UV radiation-sensitive norin 1 rice contains defective cyclobutane pyrimidine dimer photolyase. Plant Cell 12:1569–1578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hidema J, Teranishi M, Iwamatsu Y et al (2005) Spontaneously occurring mutations in the cyclobutane pyrimidine dimer photolyase gene cause different sensitivities to ultraviolet-B in rice. Plant J 43:57–67

    Article  CAS  PubMed  Google Scholar 

  • Hidema J, Taguchi T, Ono T et al (2007) Increase in CPD photolyase activity functions effectively to prevent growth inhibition caused by UVB radiation. Plant J 50:70–79

    Article  CAS  PubMed  Google Scholar 

  • Iwamatsu Y, Aoki C, Takahashi M et al (2008) UVB sensitivity and cyclobutane pyrimidine dimer (CPD) photolyase genotypes in cultivated and wild rice species. Photochem Photobiol Sci 7:311

    Article  CAS  PubMed  Google Scholar 

  • Jansen MAK, Coffey AM, Prinsen E (2012) UV-B induced morphogenesis: four players or a quartet? Plant Signal Behav 7:1185–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon M-B, Kwak YH, Ju B-K, Kim K (2020) Ultraviolet sensor with fast response characteristics based on an AgNW/ZnO bi-layer. Sens Actuators A Phys 311:112044

    Article  CAS  Google Scholar 

  • Jovanić BR, Radenković B, Despotović-Zrakić M et al (2022) Effect of UV-B radiation on chlorophyll fluorescence, photosynthetic activity and relative chlorophyll content of five different corn hybrids. J Photochem Photobiol 10:100115

    Article  Google Scholar 

  • Kaiser G, Kleiner O, Beisswenger C, Batschauer A (2009) Increased DNA repair in Arabidopsis plants overexpressing CPD photolyase. Planta 230:505–515

    Article  CAS  PubMed  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Mohammed AR (2003) Effects of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy. Ann Bot 91:817–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kataria S, Jajoo A, Guruprasad KN (2014) Impact of increasing ultraviolet-B (UV-B) radiation on photosynthetic processes. J Photochem Photobiol B Biol 137:55–66

    Article  CAS  Google Scholar 

  • Kaur S, Prakash P, Bak D-H et al (2021) Regulation of dual activity of ascorbate peroxidase 1 from Arabidopsis thaliana by conformational changes and posttranslational modifications. Front Plant Sci 12:678111

    Article  PubMed  PubMed Central  Google Scholar 

  • Khudyakova AY, Kreslavski VD, Shmarev AN et al (2019) Impact of UV-B radiation on the photosystem II activity, pro-/antioxidant balance and expression of light-activated genes in Arabidopsis thaliana hy4 mutants grown under light of different spectral composition. J Photochem Photobiol B Biol 194:14–20

    Article  CAS  Google Scholar 

  • Köhler H, Contreras RA, Pizarro M et al (2017) Antioxidant responses induced by UVB radiation in Deschampsia antarctica Desv. Front Plant Sci 8:921

    Article  PubMed  PubMed Central  Google Scholar 

  • Krauss P, Markstädter C, Riederer M (1997) Attenuation of UV radiation by plant cuticles from woody species. Plant Cell Environ 20:1079–1085

    Article  Google Scholar 

  • Kreslavski VD, Strokina VV, Khudyakova AY et al (2021) Effect of high-intensity light and UV-B on photosynthetic activity and the expression of certain light-responsive genes in A. thaliana phyA and phyB mutants. Biochim Biophys Acta (BBA)-Bioenergetics 1862:148445

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Nanda M, Kumar S, Chauhan PK (2018) The effects of ultraviolet radiation on growth, biomass, lipid accumulation and biodiesel properties of microalgae. Energy Sources Part A Recover Util Environ Eff 40:787–793

    CAS  Google Scholar 

  • Kumari S, Rastogi RP, Singh KL et al (2008) DNA damage: detection strategies. EXCLI J 7:44–62

    Google Scholar 

  • Kunz BA, Dando PK, Grice DM et al (2008) UV-induced DNA damage romotes resistance to the biotrophic pathogen Hyaloperonospora parasitica in Arabidopsis. Plant Physiol 148:1021–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KJ, Mann E, da Silva LM et al (2019) DNA damage measurements within tissue samples with repair assisted damage detection (RADD). Curr Res Biotechnol 1:78–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee T, Do KK, Kim J-M et al (2021) Genome-wide association study for ultraviolet-B resistance in soybean (Glycine max L.). Plants 10:1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonowicz G, Trzebuniak KF, Zimak-Piekarczyk P et al (2018) The activity of superoxide dismutases (SODs) at the early stages of wheat deetiolation. PLoS ONE 13:e0194678

    Article  PubMed  PubMed Central  Google Scholar 

  • Leszczynski K (1995) Assessment and comparison of methods for solar ultraviolet radiation measurements. Finnish Centre for Radiation and Nuclear Safety, Helsinki

    Google Scholar 

  • Li H, Li Y, Deng H et al (2018) Tomato UV-B receptor SlUVR8 mediates plant acclimation to UV-B radiation and enhances fruit chloroplast development via regulating SlGLK2. Sci Rep 8:6097

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Li W, Liu W, Kakoki A et al (2019) Nucleotide excision repair capacity increases during differentiation of human embryonic carcinoma cells into neurons and muscle cells. J Biol Chem 294:5914–5922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Chong L, Huang T et al (2023) Natural products and extracts from plants as natural UV filters for sunscreens: a review. Anim Model Exp Med 6:183–195

    Article  Google Scholar 

  • Liu B, Liu X, Li Y-S, Herbert SJ (2013) Effects of enhanced UV-B radiation on seed growth characteristics and yield components in soybean. Field Crop Res 154:158–163

    Article  Google Scholar 

  • Liu S, Yu L, Liu L et al (2023) Effects of ultraviolet-B radiation on the regulation of ascorbic acid accumulation and metabolism in lettuce. Horticulturae 9:200

    Article  Google Scholar 

  • Lu Y, Liu Y, Yang C (2017) Evaluating in vitro DNA damage using comet assay. JoVE. https://doi.org/10.3791/56450

    Article  PubMed  PubMed Central  Google Scholar 

  • Mareri L, Parrotta L, Cai G (2022) Environmental stress and plants. Int J Mol Sci 23:5416

    Article  PubMed  PubMed Central  Google Scholar 

  • Mariz-Ponte N, Martins S, Gonçalves A et al (2019) The potential use of the UV-A and UV-B to improve tomato quality and preference for consumers. Sci Hortic 246:777–784

    Article  CAS  Google Scholar 

  • Mariz-Ponte N, Mendes RJ, Sario S et al (2021) Physiological, biochemical and molecular assessment of UV-A and UV-B supplementation in Solanum lycopersicum. Plants 10:918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Meyer P, Van de Poel B, De Coninck B (2021) UV-B light and its application potential to reduce disease and pest incidence in crops. Hortic Res 8(1):194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S et al (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220

    Article  CAS  PubMed  Google Scholar 

  • Mirecki RM, Teramura AH (1984) Effects of ultraviolet-B irradiance on soybean: V. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiol 74:475–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell DL, Nairn RS (1989) The biology of the (6-4) photoproduct. Photochem Photobiol 49:805–819

    Article  CAS  PubMed  Google Scholar 

  • Mmbando GS (2023) The recent relationship between ultraviolet-B radiation and biotic resistance in plants: a novel non-chemical strategy for managing biotic stresses. Plant Signal Behav 18(1):2191463

    Article  PubMed  PubMed Central  Google Scholar 

  • Mmbando GS, Hidema J (2021) The trade-off between UVB sensitivity and tolerance against other stresses in African rice species. Turk J Bot 45:601–612

    Article  CAS  Google Scholar 

  • Mmbando GS, Teranishi M, Hidema J (2020) Very high sensitivity of African rice to artificial ultraviolet-B radiation caused by genotype and quantity of cyclobutane pyrimidine dimer photolyase. Sci Rep 10(1):1–14

    Article  Google Scholar 

  • Mmbando GS, Teranishi M, Hidema J (2021) Transgenic rice Oryza glaberrima with higher CPD photolyase activity alleviates UVB-caused growth inhibition. GM Crop Food 12:435–448

    Article  Google Scholar 

  • Mmbando GS, Ando S, Takahashi H, Hidema J (2023) High ultraviolet-B sensitivity due to lower CPD photolyase activity is needed for biotic stress response to the rice blast fungus, Magnaporthe oryzae. Photochem Photobiol Sci 22(6):1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Monforte L, Soriano G, Núñez-Olivera E, Martínez-Abaigar J (2018) Cell compartmentation of ultraviolet-absorbing compounds: an underexplored tool related to bryophyte ecology, phylogeny and evolution. Funct Ecol 32:882–893

    Article  Google Scholar 

  • Neale RE, Barnes PW, Robson TM et al (2021) Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP environmental effects assessment panel, update 2020. Photochem Photobiol Sci 20:1–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogués S, Allen DJ, Morison JIL, Baker NR (1998) Ultraviolet-B radiation effects on water relations, leaf development, and photosynthesis in droughted pea plants. Plant Physiol 117:173–181

    Article  PubMed  PubMed Central  Google Scholar 

  • Olive PL, Banáth JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1:23–29

    Article  CAS  PubMed  Google Scholar 

  • Outlaw WH Jr, De Vlieghere-He X (2001) Transpiration rate. An important factor controlling the sucrose content of the guard cell apoplast of broad bean. Plant Physiol 126:1716–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palma CFF, Castro-Alves V, Morales LO et al (2021) Spectral composition of light affects sensitivity to UV-B and photoinhibition in cucumber. Front Plant Sci 11:610011

    Article  PubMed  PubMed Central  Google Scholar 

  • Parihar P, Singh S, Singh R et al (2015) Changing scenario in plant UV-B research: UV-B from a generic stressor to a specific regulator. J Photochem Photobiol B Biol 153:334–343

    Article  CAS  Google Scholar 

  • Piccini C, Cai G, Dias MC et al (2020) UV-B radiation affects photosynthesis-related processes of two Italian Olea europaea (L.) varieties differently. Plants 9:1–21

    Article  Google Scholar 

  • Poli Y, Nallamothu V, Balakrishnan D et al (2018) Increased catalase activity and maintenance of photosystem II distinguishes high-yield mutants from low-yield mutants of rice var. nagina22 under low-phosphorus stress. Front Plant Sci 9:1543

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin X, Zhang S, Oda H et al (1995) Quantitative detection of ultraviolet light-induced photoproducts in mouse skin by immunohistochemistry. Jpn J Cancer Res 86:1041–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quaite FE, Sutherland BM, Sutherland JC (1992) Quantitation of pyrimidine dimers in DNA from UVB-irradiated alfalfa (Medicago sativa L.) seedlings. Appl Theor Electrophor 2:171–175

    CAS  PubMed  Google Scholar 

  • Quaite FE, Sutherland JC, Sutherland BM (1994) Isolation of high-molecular-weight plant DNA for DNA damage quantitation: relative effects of solar 297 nm UVB and 365 nm radiation. Plant Mol Biol 24:475–483

    Article  CAS  PubMed  Google Scholar 

  • Rácz A, Czégény G, Csepregi K, Hideg É (2020) Ultraviolet-B acclimation is supported by functionally heterogeneous phenolic peroxidases. Sci Rep 10:16303

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravanat J-L, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B Biol 63:88–102

    Article  CAS  Google Scholar 

  • Rittinghausen S, Bellmann B, Creutzenberg O et al (2013) Evaluation of immunohistochemical markers to detect the genotoxic mode of action of fine and ultrafine dusts in rat lungs. Toxicology 303:177–186

    Article  CAS  PubMed  Google Scholar 

  • Robson TM, Klem K, Urban O, Jansen MAK (2015) Re-interpreting plant morphological responses to UV-B radiation. Plant Cell Environ 38:856–866

    Article  CAS  PubMed  Google Scholar 

  • Roro AG, Terfa MT, Solhaug KA et al (2016) The impact of UV radiation at high altitudes close to the equator on morphology and productivity of pea (Pisum sativum) in different seasons. S Afr J Bot 106:119–128

    Article  Google Scholar 

  • Santos JH, Meyer JN, Mandavilli BS, Van Houten B (2006) Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. DNA Repair Protoc Mamm Syst 314:183–199

    Article  CAS  Google Scholar 

  • Savchenko T, Tikhonov K (2021) Oxidative stress-induced alteration of plant central metabolism. Life 11:304

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Sesto A, Navarro M, Burslem F, Jorcano JL (2002) Analysis of the ultraviolet B response in primary human keratinocytes using oligonucleotide microarrays. Proc Natl Acad Sci 99:2965–2970

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J-C, Fox EJ, Ahn EH, Loeb LA (2014) A rapid assay for measuring nucleotide excision repair by oligonucleotide retrieval. Sci Rep 4:4894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi C, Liu H (2021) How plants protect themselves from ultraviolet-B radiation stress. Plant Physiol 187:1096–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SK, Reddy KR, Reddy VR, Gao W (2014) Maize growth and developmental responses to temperature and ultraviolet-B radiation interaction. Photosynthetica 52:262–271

    Article  CAS  Google Scholar 

  • Song X, Peng C, Jiang H et al (2013) Direct and indirect effects of UV-B exposure on litter decomposition: a meta-analysis. PLoS ONE 8:e68858

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenie S, Chang YP, Gnanasekaran A et al (2020) An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. J Funct Foods 68:103917

    Article  CAS  Google Scholar 

  • Steurer B, Turkyilmaz Y, van Toorn M et al (2019) Fluorescently-labelled CPD and 6-4PP photolyases: new tools for live-cell DNA damage quantification and laser-assisted repair. Nucleic Acids Res 47:3536–3549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Y, Duan Y, Chi Q et al (2023) The role of reactive oxygen species in plant response to radiation. Int J Mol Sci 24:3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teramura AH, Sullivan JH (1994) Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynth Res 39:463–473

    Article  CAS  PubMed  Google Scholar 

  • Teranishi M, Iwamatsu Y, Hidema J, Kumagai T (2004) Ultraviolet-B sensitivities in Japanese lowland rice cultivars: cyclobutane pyrimidine dimer photolyase activity and gene mutation. Plant Cell Physiol 45:1848–1856

    Article  CAS  PubMed  Google Scholar 

  • Teranishi M, Taguchi T, Ono T, Hidema J (2012) Augmentation of CPD photolyase activity in japonica and indica rice increases their UVB resistance but still leaves the difference in their sensitivities. Photochem Photobiol Sci 11(5):812–820

    Article  CAS  PubMed  Google Scholar 

  • Thomas BC, Goracke BD, Dalton SM (2016) Atmospheric constituents and surface-level UVB: implications for a paleoaltimetry proxy and attempts to reconstruct UV exposure during volcanic episodes. Earth Planet Sci Lett 453:141–151

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi D, Nam A, Oldenburg DJ, Bendich AJ (2020) Reactive oxygen species, antioxidant agents, and DNA damage in developing maize mitochondria and plastids. Front Plant Sci 11:596

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi D, Meena RP, Pandey-Rai S (2021) Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) dunal under in-vitro condition. Physiol Mol Biol Plants 27:1823–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai M-L, Chang K-Y, Chiang C-S et al (2009) UVB radiation induces persistent activation of ribosome and oxidative phosphorylation pathways. Radiat Res 171:716–724

    Article  ADS  CAS  PubMed  Google Scholar 

  • Tsitas SR, Yung YL (1996) The effect of volcanic aerosols on ultraviolet radiation in Antarctica. Geophys Res Lett 23:157–160

    Article  ADS  Google Scholar 

  • Vanhaelewyn L, Van Der Straeten D, De Coninck B, Vandenbussche F (2020) Ultraviolet radiation from a plant perspective: the plant-microorganism context. Front Plant Sci 11:1984

    Article  Google Scholar 

  • Volkova PY, Bondarenko EV, Kazakova EA (2022) Radiation hormesis in plants. Curr Opin Toxicol 30:100334

    Article  CAS  Google Scholar 

  • Wan J, Zhang P, Wang R et al (2018) UV-B radiation induces root bending through the flavonoid-mediated auxin pathway in Arabidopsis. Front Plant Sci 9:618

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Kinoshita T (2017) Measurement of stomatal conductance in rice. Bio-protocol 7:e2226

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Leng C, Zhu Y et al (2022) UV-B treatment enhances phenolic acids accumulation and antioxidant capacity of barley seedlings. LWT 153:112445

    Article  CAS  Google Scholar 

  • White AL, Jahnke LS (2002) Contrasting effects of UV-A and UV-B on photosynthesis and photoprotection of β-carotene in two Dunaliella spp. Plant Cell Physiol 43:877–884

    Article  CAS  PubMed  Google Scholar 

  • Williams TB, Dodd IC, Sobeih WY, Paul ND (2022) Ultraviolet radiation causes leaf warming due to partial stomatal closure. Hortic Res 9:uhab066

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu T, Zhang W, Wu S et al (2023a) Retrieving rice (Oryza sativa L.) net photosynthetic rate from UAV multispectral images based on machine learning methods. Front Plant Sci 13:1088499

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu X, Chen B, Xiao J, Guo H (2023b) Different doses of UV-B radiation affect pigmented potatoes’ growth and quality during the whole growth period. Front Plant Sci 14:1101172

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Fu X, Lu M, Wei B (2022) A transcriptomic perspective on the effect of UV irradiation on vitamin C content in pea sprouts. Food Sci Technol 42:e09022

    Article  Google Scholar 

  • Xue S, Zang Y, Chen J et al (2022a) Ultraviolet-B radiation stress triggers reactive oxygen species and regulates the antioxidant defense and photosynthesis systems of intertidal red algae Neoporphyra haitanensis. Front Mar Sci 9:1043462

    Article  Google Scholar 

  • Xue S, Zang Y, Chen J et al (2022b) Effects of enhanced UV-B radiation on photosynthetic performance and non-photochemical quenching process of intertidal red macroalgae Neoporphyra haitanensis. Environ Exp Bot 199:104888

    Article  CAS  Google Scholar 

  • Yang Y, Niu K, Hu Z et al (2018) Linking species performance to community structure as affected by UV-B radiation: an attenuation experiment. J Plant Ecol 11:286–296

    Article  Google Scholar 

  • Yokawa K, Kagenishi T, Baluška F (2016) UV-B induced generation of reactive oxygen species promotes formation of BFA-induced compartments in cells of Arabidopsis root apices. Front Plant Sci 6:1–10

    Article  Google Scholar 

  • Yoon MY, Kim MY, Shim S et al (2016) Transcriptomic profiling of soybean in response to high-intensity UV-B irradiation reveals stress defense signaling. Front Plant Sci 7:1917

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon HI, Kim HY, Kim J et al (2021) Quantitative analysis of UV-B radiation interception in 3D plant structures and intraindividual distribution of phenolic contents. Int J Mol Sci 22:2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu GH, Li W, Yuan ZY et al (2013) The effects of enhanced UV-B radiation on photosynthetic and biochemical activities in super-high-yield hybrid rice Liangyoupeijiu at the reproductive stage. Photosynthetica 51:33–44

    Article  CAS  Google Scholar 

  • Yuan L, Yanqun Z, Jianjun C et al (2000) Intraspecific differences in physiological response of 20 wheat cultivars to enhanced ultraviolet-B radiation under field conditions. Environ Exp Bot 44:95–103

    Article  CAS  PubMed  Google Scholar 

  • Zavala JA, Ravetta DA (2002) The effect of solar UV-B radiation on terpenes and biomass production in Grindelia chiloensis (Asteraceae), a woody perennial of Patagonia, Argentina. Plant Ecol 161:185–191

    Article  Google Scholar 

  • Zhang C, Yang Y-P, Duan Y-W (2014) Pollen sensitivity to ultraviolet-B (UV-B) suggests floral structure evolution in alpine plants. Sci Rep 4:4520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z-S, Jin L-Q, Li Y-T et al (2016) Ultraviolet-B radiation (UV-B) relieves chilling-light-induced PSI photoinhibition and accelerates the recovery of CO2 assimilation in cucumber (Cucumis sativus L.) leaves. Sci Rep 6:34455

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Huang G, Wang L et al (2019) Effects of elevated ultraviolet-B radiation on root growth and chemical signaling molecules in plants. Ecotoxicol Environ Saf 171:683–690

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Yu L, Liu S et al (2023) Transcriptome comparison analyses in UV-B induced AsA accumulation of Lactuca sativa L. BMC Genom 24:61

    Article  CAS  Google Scholar 

  • Zhu S, Coffman JA (2017) Simple and fast quantification of DNA damage by real-time PCR, and its application to nuclear and mitochondrial DNA from multiple tissues of aging zebrafish. BMC Res Notes 10:1–6

    Article  Google Scholar 

  • Zuk-Golaszewska K, Upadhyaya MK, Golaszewski J (2003) The effect of UV-B radiation on plant growth and development. Plant Soil Environ 49:135–140

    Article  Google Scholar 

Download references

Acknowledgements

The author will like to thank the University of Dodoma for providing office space for research write-ups.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

G.S.M: conceived, designed, interpreted the data, and wrote the paper.

Corresponding author

Correspondence to Gideon Sadikiel Mmbando.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mmbando, G.S. Variations in measurement for ultraviolet-B sensitivity in crops: a need for standardization. J. Crop Sci. Biotechnol. (2024). https://doi.org/10.1007/s12892-024-00239-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12892-024-00239-2

Keywords

Navigation