Skip to main content

Advertisement

Log in

Comparative morpho-physiological traits, antioxidant defense and nutritional profiling under Cd stress of japonica-indica elite rice (Oryza sativa L.) cultivars

  • Original Research
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a water-soluble heavy metal. It has adverse effects on rivers and underground water in developing countries. Rice is a hydrophilic crop grown by extensive utilization of water. Presence of Cd in paddy water can lead to destruction of both quality and quantity of rice. To access the variation in impact of Cd on two elite rice cultivars of Pakistan i.e., indica (Super Basmati) and japonica (JP-5), a pot experiment with three replicates was carried out in completely randomized design. To induce stress conditions, both cultivars were subjected to elevated levels of Cd (50 mg/kg) as cadmium chloride. The results indicated that Cd stress had a high impact on morpho-physiological traits such as grain yield, thousand grain weight and tiller number in Supper Basmati compared to JP-5. This was due to high accumulation of the reactive oxygen species and lower levels of enzymatic antioxidants including peroxidase, catalase, carotenoids, glutathione, ascorbate peroxidase, glutathione peroxidase, and phenols in Super basmati. The Cd translocation from roots to leaf and subsequently grains was higher in Super Basmati compared to JP-5. Nutritional profiling of grains showed low level of carbohydrates and proteins in Super Basmati compared to JP-5 which shows that JP-5 is more tolerant, nutritious, and high-yielding under Cd-stress conditions. JP-5 is thus recommended to be cultivated in Cd-stressed areas in future and breeders can further use it to improve crop performance in Cd-stress soil and ensure sustainable food production around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available within the article and its supplementary materials.

Abbreviations

AsA:

Ascorbic acid

APX:

Ascorbate peroxidase

BY:

Biological yield

BCF:

Bioconcentration factor

CAT:

Catalase

FLA:

Flag leaf area

GSH:

Glutathione

GSSG:

Oxidized glutathione

GP:

Germination percentage

GI:

Germination index

GPX:

Glutathione peroxidase

G/P:

Grain per panicle

GY:

Grain yield

MGT:

Mean germination time

MDA:

Malonaldehyde

PH:

Plant height

P/P:

Panicle per plant

PL:

Panicle length

POD:

Peroxidase

RL:

Root length

ROS:

Reactive oxygen species

RIR:

Relative injury rate

SL:

Shoot length

SOD:

Superoxide dismutase

SV:

Seed vigor

T/P:

Tiller per plant

TGW:

Thousand grain weight

TF:

Translocation factor

TCC:

Total carotenoid content

TPC:

Total phenolic compounds

TAC:

Total antioxidant capacity

WUP:

Water uptake percentage

References

  • Abdul-Baki AA, Anderson JD (1973) Vigor determination in soybean seed by multiple criteria 1. Crop Sci 13(6):630–633

    Article  Google Scholar 

  • Abedin M et al (2002) Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant Soil 240(2):311–319

    Article  CAS  Google Scholar 

  • Aebi H (1984) [13] Catalase in vitro. Methods Enzymol Elsevier 105:121–126

    Article  CAS  Google Scholar 

  • Ahmed HGMD et al (2022) Characterization of wheat (Triticum aestivum L.) accessions using morpho-physiological traits under varying levels of salinity stress at seedling stage. Front Plant Sci 13:953670

  • Allen SE et al (1986) Chemical analysis. In: Moore PD, Chapman SB (eds) Methods of plant ecology, Blackwell, Oxford, pp 285–344

  • Amarowicz R et al (2004) Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem 84(4):551–562

    Article  CAS  Google Scholar 

  • Anderson ME (1985) [70] Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol Elsevier 113:548–555

    Article  CAS  Google Scholar 

  • Atta K et al (2021) Effects of salinity, drought and heavy metal stress during seed germination stage in ricebean [Vigna umbellata (Thunb.) Ohwi and Ohashi]. Plant Physiol Rep 26:109–115

    Article  CAS  Google Scholar 

  • Baisak R et al (1994) Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress. Plant Cell Physiol 35(3):489–495

    CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  CAS  PubMed  Google Scholar 

  • Bouslama M, Schapaugh W Jr (1984) Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance 1. Crop Sci 24(5):933–937

    Article  Google Scholar 

  • Bray HG, Thorpe WV (1954) Analysis of phenolic compounds of interest in metabolism. In: Glick D (ed) Methods of biochemical analysis. https://doi.org/10.1002/9780470110171

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83(3):463–468

    Article  CAS  Google Scholar 

  • Chattopadhyay A et al (2021) Effect of phosphorus application on arsenic species accumulation and co-deposition of polyphenols in rice grain: Phyto and food safety evaluation. Plants 10(2):281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J et al (2007) The effects of Cd on lipid peroxidation, hydrogen peroxide content and antioxidant enzyme activities in Cd-sensitive mutant rice seedlings. Can J Plant Sci 87(1):49–57

    Article  CAS  Google Scholar 

  • Chen J et al (2021) Transcriptomic and physiological comparsion of the short-term responses of two Oryza sativa L. varieties to cadmium. Environ Experiment Bot 181:104292

    Article  CAS  Google Scholar 

  • Deivanai S et al (2011) Role of exogenous proline in ameliorating salt stress at early stage in two rice cultivars. J Stress Physiol Biochem 7(4):157–174

    Google Scholar 

  • del Rıo LA et al (1998) The activated oxygen role of peroxisomes in senescence. Plant Physiol 116(4):1195–1200

    Article  ADS  PubMed Central  Google Scholar 

  • Di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Experiment Bot 41(2):105–130

    Article  Google Scholar 

  • El-Hashash E et al (2018) Genetic parameters, multivariate analysis and tolerance indices of rice genotypes under normal and drought stress environments. Asian J Res Crop Sci 1(3):1–18

    Article  Google Scholar 

  • Esmaeilzadeh-Moridani M et al (2022) Profiling the physiological response of upland and lowland rice (Oryza sativa L.) genotypes to water deficit. J Crop Sci Biotech 25(3):289–300

    Article  CAS  Google Scholar 

  • Fadhel DH (2012) Spectrophotometric determination of ascorbic acid in aqueous solutions. Al-Nahrain J Sci 15(3):88–94

    Google Scholar 

  • Fernandez GC (1992) Effective selection criteria for assessing plant stress tolerance. Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Aug. 13–16, Shanhua, Taiwan

  • Fernández R et al (2013) Growth and physiological responses to cadmium stress of two populations of Dittrichia viscosa (L.) Greuter. J Hazard Mater 244:555–562

    Article  PubMed  Google Scholar 

  • Fischer R, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust J Agric Res 29(5):897–912

    Article  Google Scholar 

  • Gairola K et al (2011) Effect of temperatures and germination media on seed germination of Jatropha curcas Linn. Adv Biores 2(2):66–71

    MathSciNet  Google Scholar 

  • Gavuzzi P et al (1997) Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Can J Plant Sci 77(4):523–531

    Article  Google Scholar 

  • Genchi G et al (2020) The effects of cadmium toxicity. Int J Environ Res Public Health 17(11):3782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS et al (2011) Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. Plant Stress 5(1):1–23

    Google Scholar 

  • Gonçalves JF et al (2009) Cadmium-induced oxidative stress in two potato cultivars. Biometals 22(5):779–792

    Article  PubMed  Google Scholar 

  • Grant C et al (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ 390(2–3):301–310

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M et al (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. Crop stress its management: perspectives strategies: 261–315

  • Hashem HA (2014) Cadmium toxicity induces lipid peroxidation and alters cytokinin content and antioxidant enzyme activities in soybean. Botany 92(1):1–7

    Article  MathSciNet  CAS  Google Scholar 

  • He L et al (2019) Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China. Environ Pollut 252:846–855.

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophy 125(1):189–198

    Article  CAS  Google Scholar 

  • Hedge J, Hofreiter B (1962) Estimation of carbohydrate. Methods in carbohydrate chemistry. Academic Press, New York, pp 17–22

    Google Scholar 

  • Hedge J et al (1962) Carbohydrate chemistry, vol 17. Academic Press, New York, pp 371–380

    Google Scholar 

  • Javaid S et al (2020) 5. Heavy metals stress, mechanism and remediation techniques in rice (Oryza sativa L.): a review. Pure Applied Biology 9(1):403–426

    Article  CAS  Google Scholar 

  • Jensen A (1978) Chlorophylls and carotenoids. Handbook of phycological methods, physiological and biochemical methods. Cambridge University Press, Cambridge, pp 59–70

    Google Scholar 

  • Jing D et al (2005) Effect of cadmium on growth and photosynthesis of tomato seedlings. J Zhejiang Univ Sci B 6(10):974–980

    Google Scholar 

  • Kalhori N et al (2018) Effect of four different salts on seed germination and morphological characteristics of Oryza sativa L. cv. MR219. J Int J Adv Res Bot 4(1):29–45

    Google Scholar 

  • Kosolsaksakul P et al (2014) Geochemical associations and availability of cadmium (Cd) in a paddy field system, northwestern Thailand. Environ Pollut 187:153–161

    Article  CAS  PubMed  Google Scholar 

  • Li Y (2008) Effect of salt stress on seed germination and seedling growth of three salinity plants. Pakistan J Biol Sci: PJBS 11(9):1268–1272

    Article  CAS  Google Scholar 

  • Liu J et al (2007) Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. J Hazard Mater 143(1–2):443–447

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Lundquist I, Josefsson J-O (1971) Sensitive method for determination of peroxidase activity in tissue by means of coupled oxidation reaction. Anal Biochem 41(2):567–577

    Article  CAS  PubMed  Google Scholar 

  • Malhotra S, Sarkar S (1979) Effects of sulphur dioxide on sugar and free amino acid content of pine seedlings. Physiol Plant 47(4):223–228

    Article  CAS  Google Scholar 

  • Mellem JJ et al (2012) Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. Afr J Agric Res 7(4):591–596

    Google Scholar 

  • Mitra S et al (2018) Bioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stress. Ecotoxicol Environ Saf 156:183–196

    Article  CAS  PubMed  Google Scholar 

  • Mondo VHV et al (2013) Seed vigor and initial growth of corn crop. J Seed Sci 35:64–69

    Article  Google Scholar 

  • Nagalakshmi N, Prasad M (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160(2):291–299

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Organization WH (1996) Permissible limits of heavy metals in soil and plants. Switzerland, Geneva

    Google Scholar 

  • Pachura P et al (2016) Assessment of the availability of heavy metals to plants based on the translocation index and the bioaccumulation factor. Desalination Water Treat 57(3):1469–1477

    Article  CAS  Google Scholar 

  • Perveen S et al (2012) Impact of sewage water on vegetables quality with respect to heavy metals in Peshawar, Pakistan. Pak J Bot 44(6):1923–1931

    Google Scholar 

  • Prieto P et al (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269(2):337–341

    Article  CAS  PubMed  Google Scholar 

  • Rahoui S et al (2010) Membrane damage and solute leakage from germinating pea seed under cadmium stress. J Hazard Mater 178(1–3):1128–1131

    Article  CAS  PubMed  Google Scholar 

  • Reza R, Ganguly P, Dutta SK et al (2023) Biochemical response of plant and soil to varied levels of nitrogen and penoxsulam application in rice crop. J Soil Sci Plant Nutr 23:4373–4384

  • Rizwan M et al (2012) Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J Hazard Mater 209:326–334

    Article  PubMed  Google Scholar 

  • Rosielle A, Hamblin J (1981) Theoretical aspects of selection for yield in stress and non-stress environment 1. J Crop Sci 21(6):943–946

    Article  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24(5):2155–2167. https://doi.org/10.1105/tpc.112.096925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shah SS et al (2011) Effects of cadmium and salinity on growth and photosynthesis parameters of Brassica species. Pak J Bot 43(1):333–340

    Google Scholar 

  • Shaikh IR et al (2013) Phytotoxic effects of heavy metals (Cr, Cd, Mn and Zn) on wheat (Triticum aestivum L.) seed germination and seedlings growth in black cotton soil of Nanded. J Res J Chem Sci 2231:606X

    Google Scholar 

  • Sharma P et al (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. https://doi.org/10.1155/2012/217037

    Article  Google Scholar 

  • Smiri M et al (2011) Cadmium affects the glutathione/glutaredoxin system in germinating pea seeds. Biol Trace Elem Res 142(1):93–105

    Article  CAS  PubMed  Google Scholar 

  • Somashekaraiah B et al (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorphyll degradation. Physiol Plant 85(1):85–89

    Article  CAS  Google Scholar 

  • Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci 107(38):16500–16505

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  • Velikova V et al (2000) Some antioxidant systems in acid rain treated bean plants; protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang W et al (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  • Wójcik M, Tukiendorf A (2011) Glutathione in adaptation of Arabidopsis thaliana to cadmium stress. Biol Plant 55:125–132

    Article  Google Scholar 

  • Xie P-P et al (2015) Effects of cadmium on bioaccumulation and biochemical stress response in rice (Oryza sativa L.). Ecotoxicol Environ Saf 122:392–398

    Article  CAS  PubMed  Google Scholar 

  • Yang D et al (2016) Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes. BMC Genet 17(1):1–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang D et al (2014) Tissue culture-induced heritable genomic variation in rice, and their phenotypic implications. PLoS ONE 9(5):e96879

    Article  ADS  PubMed Central  PubMed  Google Scholar 

  • Zhao X et al (2021) Evaluation of heavy metal phytotoxicity to Helianthus annuus L. using seedling vigor index-soil model. Chemosphere 275:130026

    Article  CAS  PubMed  Google Scholar 

  • Zouari M et al (2016) Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity, water status and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.). Ecotoxicol Environ Saf 128:100–108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

AH performed methodology, data analysis, and writing-original draft. ZS and AF performed experimentation. MA performed visualization. UMQ performed supervision. All authors read and approved the last version.

Corresponding author

Correspondence to Umar Masood Quraishi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, A., Anas, M., Shaheen, Z. et al. Comparative morpho-physiological traits, antioxidant defense and nutritional profiling under Cd stress of japonica-indica elite rice (Oryza sativa L.) cultivars. J. Crop Sci. Biotechnol. 27, 175–186 (2024). https://doi.org/10.1007/s12892-023-00220-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-023-00220-5

Keywords

Navigation