Skip to main content
Log in

Genetic diversity of selected pigmented traditional rice (Oryza sativa L.) varieties from Mindanao, Philippines using agromorphological traits and simple sequence repeats markers

  • Original Research
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Philippine pigmented traditional rice varieties (TRVs) offer potential novel genes for genetic improvement. In this study, forty-three pigmented traditional rice varieties (TRVs) from Region X, XII and XIII in Mindanao were evaluated using 47 agromorphological (22 qualitative and 25 quantitative) traits, grain chemical properties, disease reaction, insect pests, and 64 SSR markers. The standardized Shannon–Weaver diversity index for phenotypic diversity averaged at 0.30 for qualitative and 0.88 for quantitative traits. Desirable traits observed in the TRVs include erect flag leaf, pubescent leaf blade, and strong culm for lodging resistance. Three TRVs, Malagkit (CollNo. 4555), Dinorado (CollNo. 11071), and Canayo (CollNo. 12794) showed resistance to blast. While Kabuyok (CollNo. 1091), Kabuyog (CollNo. 11052), Dinorado (CollNo. 12786), Lubang (Red) (CollNo. 4541), Manganahaw (CollNo. 4570), Palawenyo (CollNo. 6361), Boringan (CollNo. 4291), Mixture from Kabuyok (CollNo. 11070) and Mimis (CollNo. 1092) recorded intermediate resistance to whiteheads. Tapul (CollNo. 5156) was identified to have blast resistance with desirable grain chemical properties: intermediate amylose content, low gelatinization temperature and medium cooked rice. The PIC values revealed that RM26550, RM28166, RM10665, RM27492 and RM23251 could be the best markers for genetic diversity estimation of these TRVs. The diversity at gene level showed average of 3.48 alleles ranging from 2 to 11 per locus. Mean gene diversity (H) value for all SSR loci was at 0.34, indicates moderate genetic diversity of TRVs used in the study. These pigmented TRVs can be tapped for pests/diseases resistance, and grain quality research, direct utilization or as parents in specific breeding purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source https://upload.wikimedia.org/wikipedia/commons/4/47/Mindanao_regions.PNG. as of March 2020

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad F, Hanafi MM, Hakim MA, Rafii MY, Arolu IW, Akmar Abdullah SN (2015) Genetic divergence and heritability of 42 coloured upland rice genotypes (Oryza sativa) as revealed by microsatellites marker and agro-morphological traits. PLoS ONE 10(9):e0138246

    PubMed  PubMed Central  Google Scholar 

  • Aljumaili SJ, Rafii MY, Latif MA, Sakimin SZ, Arolu IW, Miah G (2018) Genetic diversity of aromatic rice germplasm revealed by SSR markers. Biomed Res Int 2018(11):1–11

    Google Scholar 

  • Ashraf H, Husaini AM, Ashraf Bhat M, Parray GA, Khan S, Ganai NA (2016) SSR based genetic diversity of pigmented and aromatic rice (Oryza sativa L.) genotypes of the western Himalayan region of India. Physiol Mol Biol Plants 22(4):547–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Hassen M, Monaco F, Facchi A, Romani M, Valè G, Sali G (2017) Economic performance of traditional and modern rice varieties under different water management systems. Sustainability 9:347

    Google Scholar 

  • Berdon JS, Ragosta EL, Inocian RB, Manalag CA, Lozano EB (2016) Unveiling Cebuano traditional healing practices. Asia Pac J Multidiscip Res 4(1):51–59

    Google Scholar 

  • Biodiversity International, International Rice Research Institute and WARDA Africa Rice Center (2007) Descriptors for wild and cultivated rice (Oryza spp.). Biodiversity International, Rome

    Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bulatao RM, Mabesa LB, Mabesa RC, Merca FE (2012) Phytochemical and functional properties of Philippine sprouted brown rice (Oryza sativa L.) as base ingredient for functional beverages. Philipp Agric Sci 95(3):225–235

    Google Scholar 

  • Brar DS, Virk PS, Jena KK, Khush GS (2009) Breeding for resistance to planthoppers in rice. In: Heong KL, Hardy B (eds) Planthoppers: new threats to the sustainability of intensive rice production systems in Asia. International Rice Research Institute, Los Baños, Philippines, pp 401–409

    Google Scholar 

  • Calingacion M, Laborte A, Nelson A, Resurreccion A, Concepcion JC, Daygon VD et al (2014) Diversity of global rice markets and the science required for consumer-targeted rice breeding. PLoS ONE 2014(9):e85106

    Google Scholar 

  • Chatuverdi AK, Bahuguna RN, Shah D, Pal M, Krishna Jagadish SV (2017) High temperature stress during flowering and grain filling offsets beneficial impact of elevated CO2 on assimilate partitioning and sink-strength in rice. Sci Rep 7:8227

    Google Scholar 

  • Chemutai LR, Musyoki MA, Kioko WF, Mwenda NS, Muriira KG, Piero NM (2016) Physicochemical characterization of selected rice (Oryza sativa L.) genotypes based on gel consistency and alkali digestion. Anal Biochem 5(3):1–5

    Google Scholar 

  • Chesnokov YV, Artemyeva AM (2015) Bioinformatics and math statistics. Agric Biol. https://doi.org/10.15389/agrobiology.2015.5.571rus(Accessed 5 September 2017)

    Article  Google Scholar 

  • Cuevas RP, Pede VO, Mckinley J, Velarde O, Demont M (2016) Rice grain quality and consumer preferences: a case study of two rural towns in the Philippines. PLoS ONE 11(3):1–17

    Google Scholar 

  • Diaz Solís SH, Rivera RM, David DL, Álvarez RC (2015) Morphoagronomic evaluation of traditional rice cultivars (Oryza sativa L.) collected in grower farm from Pinar del Río Province. Cultivos Tropicales 36(2):131–141

    Google Scholar 

  • Duan CR, Wang BH, Wang PQ, Wang DH, Cai SX (2004) Relationship between the minute structure and the lodging resistance of rice stems. Colloids Surf B Biointerfaces 35:155–158

    CAS  Google Scholar 

  • Fageria NK, Baligar VC, Clark RB (2006) Physiology of crop production. Haworth Press, Inc, Philadelphia

    Google Scholar 

  • Falqueto AR, Cassol D, Júnior ARM, De Oliveira AC, Bacarin MA (2009) Growth and assimilates partitioning in rice cultivars differing in grain yield potential. Bragantia Campinas 68(3):563–571

    Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Rehman H (2009) Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 195(4):254–261

    CAS  Google Scholar 

  • Ferrer MC (2015) Conservation, characterization, and distribution of rice germplasm resources. Genetic Resources Division. In: National Rice R and D Highlight, pp 2–4

  • Ferrer MC, Borromeo MC, Suralta RR (2014) Morpho-agronomic characterization and evaluation for drought tolerance of selected Philippine traditional rice (Oryza sativa L.) varieties. https://agris.fao.org/agris-search/search.do?recordID=PH2015000202

  • Ferrer MC, Duldulao MD, Caguiat XGI, Mananghaya TE, Newingham MCV, Nombrere JMZ, Castro JR, Alfonso DO, Regalario JB, Alvarino JBM, Pacada IG, Niones JM (2020) PhilRice genebank: recent developments in managing and sharing the Philippine rice germplasm. IOP Conf Ser Earth Environ Sci 482:012010

    Google Scholar 

  • Frank GV, Rivière P, Pin S, Baltassat R, Berthellot JF et al (2020) Genetic diversity and stability of performance of wheat population varieties developed by participatory breeding. Sustainability 12:384

    Google Scholar 

  • Gilevaei MD, Lahigi HS, Rabiei B (2018) Genetic diversity analysis of recombinant inbred lines of rice (Oryza sativa L.) using microsatellite markers. Iran J Genet Plant Breed 7(2):42–53

    Google Scholar 

  • Gonzaga ZJ, Aslam K, Septiningsih EM, Collard BC (2015) Evaluation of SSR and SNP markers for molecular breeding in rice. Plant Breed Biotechnol 3:139–152

    Google Scholar 

  • Hamaoka N, Yasui H, Yamagata Y, Inoue Y, Furuya N, Araki T, Ueno O, Yoshimura A (2017) A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice. Rice 10:20

    PubMed  PubMed Central  Google Scholar 

  • He P, Wang X, Zhang X, Jiang Y, Tian W et al (2018) Short and narrow flag leaf, a GATA zinc finger domain-containing protein, regulates flag leaf size in rice (Oryza sativa). BMC Plant Biol 18:273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano K, Ordonio RL, Matsuoka M (2017) Engineering the lodging resistance mechanism of post-green revolution rice to meet future demands. Proc Jpn Acad Ser B Phys Biol Sci 93(4):220–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huggins TD, Chen MH, Fjellstrom RG, Jackson AK, McClung AM, Edwards JD (2018) Association analysis of three diverse rice (Oryza sativa L.) germplasm collections for loci regulating grain quality traits. Plant Genome 12(1):1

    Google Scholar 

  • IRRI (2014) Standard evaluation system for rice (SES), 5th edn. International Rice Research Institute, Los Baños

    Google Scholar 

  • Islam MZ, Khalequzzaman M, Prince MFRK, Siddique MA, Rashid ESMH, Ahmed MSU, Pittendrigh BR, Ali MP (2018) Diversity and population structure of red rice germplasm in Bangladesh. PLoS ONE 13(5):e0196096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jamago JM, Cortes RV (2008) Seed diversity and utilization of the upland rice landraces and traditional varieties from selected areas in Bukidnon, Philippines. IAMURE 4:112–130

    Google Scholar 

  • Jia B, Zhao X, Qin Y, Irfan M, Kim T, Wang S, Shon JK (2019) Quantitative trait loci mapping of panicle traits in rice. Mol Biol Res Commun 8(1):9–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Juliano BO (2003) Rice chemistry and quality. Philippine Rice Research Institute, Muñoz, p 480

    Google Scholar 

  • Juliano BO (2007) Rice chemistry and quality. Philippine Rice Research Institute, Muñoz, p 402

    Google Scholar 

  • Kiani SH, Ranjbar GA, Kazemitabar SK, Kazemitabar SK, Jelodar NB, Nowrozi M, Bagheri N (2008) Inheritance of gelatinization temperature and gel consistency in rice (Oryza sativa L.). J Appl Sci 8(8):1503–1510

    CAS  Google Scholar 

  • Laborte AG, Paguirigan NC, Moya PF, Nelson A, Sparks AH, Gregorio GB (2015) Farmers’ preference for rice traits: insights from farm surveys in Central Luzon, Philippines, 1966–2012. PLoS ONE 10(8):e0136562

    PubMed  PubMed Central  Google Scholar 

  • Lang YZ, Yang XD, Wang ME, Zhu QS (2012) Effects of lodging at different filling stages on rice yield and grain quality. Rice Sci 19:315–319

    Google Scholar 

  • Lasalita-Zapico F, Hernandez JE, Borromeo TH, McNally KL, Dizon JT, Fernando ES (2019) Traditional agro-ecosystem in Southern Philippines: vulnerabilities, threats and interventions. Int J Disaster Resil Built Environ. https://doi.org/10.1108/IJDRBE-06-2019-0036

    Article  Google Scholar 

  • Li J, Yuan Y, Lu Z, Yang L, Gao JL, Lu J, Xiong G (2012) Glabrous Rice 1, encoding a homeodomain protein, regulates trichome development in rice. Rice (New York) 5:32

    Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129

    CAS  PubMed  Google Scholar 

  • Mandal NP, Variar M, Kumar A (2016) Paper 4 Prospects of aerobic rice in water-limited bunded uplands and shallow lowlands of eastern India. In: Development and dissemination of climate-resilient rice varieties for water-short areas of South Asia and Southeast Asia: 17 Papers.https://www.adb.org/sites/default/files/project-document/185360/47163-001-tacr-01.pdf#page=61. Accessed 07 Sept 2017

  • Mau YS, Markus JER, Shirly S, Oematan S, Ndiwa ASS, Handoko DD, Nasution A, Makbul K (2017) Genetic diversity of red and black upland rice accessions from East Nusa Tenggara, Indonesia as revealed by agro-morphological characters. Biodivers J Biol Biodivers 18:197–211

    Google Scholar 

  • Mengistu F, Motoike S, Cruz C (2016) Molecular characterization and genetic diversity of the macaw palm ex situ germplasm collection revealed by microsatellite markers. Diversity 8(4):20

    Google Scholar 

  • Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Islam K, Latif MA (2013) A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int J Mol Sci 14(11):22499–22528

    PubMed  PubMed Central  Google Scholar 

  • Nei M, Roychoudhury AK (1974) Sampling variances of heterozygosity and genetic distance. Genetics 76(2):379–390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen HT, Blum A (2004) Physiology and biotechnology integration for plant breeding. https://books.google.com.ph/books. Accessed 07 Sept 2017

  • Olowa LF, Torres MAJ, Aranico EC, Demayo CG (2012) Medicinal plants used by the Higaonon tribe of Rogongon, Iligan City, Mindanao, Philippines. Adv Environ Biol 6(4):1442–1449

    Google Scholar 

  • Palanog AD, Calayugan MIC, Descalsota-Empleo GI, Amparado A, Inabangan-Asilo MA, Arocena EC, Sta. Cruz PC, Borromeo TH, Lalusin A, Hernandez JE, Acuin C, Reinke R, and Swamy BPM (2019) Zinc and iron nutrition status in the Philippines population and local soils. Front Nutr 6:81

  • Pathak KS, Rathi S, Sarma RN, Baishya S (2016) Assessment of physical, chemical and antioxidant properties of few pigmented glutinous rice grown in Northeast India. Indian J Plant Physiol 21(3):287–299

    Google Scholar 

  • Perez LM (2014) Genetic resources division. In: National Rice R and D Highlights, pp 1–3

  • Perez LM, Pastor HM, Domingo JM, Mananghaya TE, Tabanao DA, Manigbas NL (2012) Detecting hybrid admixtures through DNA analysis. Philipp J Crop Sci 37(1):42–46

    Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  • Rabara RC, Ferrer MC, Diaz CL, Newingham MCV, Romero GO (2014) Phenotypic diversity of farmer’ traditional rice varieties in the Philippines. Agronomy 4:214–241

    Google Scholar 

  • Raji AA (2003) Assessment of genetic diversity and heterotic relationships in African improved and local cassava (Manihot esculenta Crantz) germplasm. PhD thesis. University of Ibadan, Nigeria

    Google Scholar 

  • Ranjith P, Sahu S, Dash SK, Bastia DN, Pradhan BD (2019) Principal component analysis of rice varieties under bacterial leaf blight incidence. Int J Chem 7(3):4184–4187

    CAS  Google Scholar 

  • Rashmi D, Bisen P, Saha S, Loitongbam B, Singh S, Pallavi PK (2017) Genetic diversity analysis in rice (Oryza sativa L.) accessions using SSR markers. Int J Agric Environ Biotechnol 10(4):1–11

    Google Scholar 

  • Ribeiro do Vale FX, Parlevliet JE, Zambolim L (2001) Concepts in plant disease resistance. Fitopatologia Bras 26:577–589

    Google Scholar 

  • Rillon JP, Santiago GDC, Duca MSV (2015) Evaluation of PhilRice germplasm collection for biotic stresses. Genetic resources division. In: National Rice R and D Highlight, pp 19–20

  • Rodrigo C (2015) Impact of price on the organic rice farming sector in Sri Lanka. Available in DailyFT homepage: http://www.ft.lk/article/448759/Impact-of-price-on-the-organic-rice-farmingsector-in-Sri-Lanka. Accessed 20 Apr 2018

  • Romero MV, Panajon NM, Manaoes RV, Mamucod HF (2009) Health-promoting antioxidants from pigmented rice. Philippine Rice Research Institute, Maligaya, Science City of Muñoz, 3119 Nueva Ecija (Philippines). Rice Chemistry and Food Science. https://agris.fao.org/agris-search/search.do?recordID=PH2009001723. Accessed 07 Sept 2017

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana. https://pubman.mpdl.mpg. Accessed 07 Sept 2017

  • Sharma N, Khanna R (2019) Rice grain quality: current developments and future prospects. In: Shah F, Khan Z, Iqbal A, Turan M, Olgun M (eds) Recent advances in grain crops research. IntechOpen, London. https://doi.org/10.5772/intechopen.89367. (Accessed 07 Sept 2017)

  • Sperotto RA, Ricachenevsky FK, Waldow VDA, Müller ALH (2013) Rice grain Fe, Mn and Zn accumulation: how important are flag leaves and seed number. Plant Soil Environ 59(6):262–266

    CAS  Google Scholar 

  • Taylaran RD (2015) Traditional upland rice (Oryza sativa L.) for drought adaptation in marginal uplands. J Multidiscip Res 4(2):27–44

    Google Scholar 

  • Thangasamy S, Bolaños-Villegas P, Jauh GY (2011) Branching pattern: an inevitable trait for rice production. https://www.researchgate.net/publication/287245760. Accessed 14 June 2020

  • Wang J (2005) Estimation of effective population sizes from data on genetic markers. Philipp Trans R Soc B 360:1395–1409

    CAS  Google Scholar 

  • Wang SS, Chen RK, Chen KY, Liu CY, Kao SM, Chung CL (2017) Genetic mapping of the qSBN7 locus, a QTL controlling secondary branch number per panicle in rice. Breed Sci 67:340–347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav S, Singh A, Singh MR, Goel N, Vinod KK, Mohapatra T, Singh AK (2013) Assessment of genetic diversity in Indian rice germplasm (Oryza sativa L.): use of random versus trait-linked microsatellite markers. J Genet 92(3):545–557

    CAS  PubMed  Google Scholar 

  • Yamagishi J, Nemoto K, Mu C, Yamagishi J, Nemoto K, Mu C (2003) Diversity of the rachis-branching system in a panicle in japónica rice diversity of the rachis-branching system in a panicle in japonica rice. Plant Prod Sci 6(1):59–64

    Google Scholar 

  • Yue B, Xue WY, Luo LJ, Xing YZ (2006) QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice. Acta Genet Sin 33:824–832

    CAS  PubMed  Google Scholar 

  • Zapico FL, Aguilar CH, Abistano A, Turner JC, Reyes L (2015) Biocultural diversity of Sarangani Province, Philippines: an ethno-ecological analysis. Rice Sci 22(3):138–146

    Google Scholar 

  • Zhou Y, Zhu J, Li Z, Yi C, Liu J, Zhang H, Liang G (2009) Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics 183(1):315–324

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Department of Science and Technology—Accelerated Science and Technology Human Resource Development Program-National Science Consortium (DOST-ASTHRDP-NSC) and Department of Science and Technology—Philippine Council for Agriculture, Aquatic, and Natural Resources Research and Development (DOST-PCAARRD) for the financial support of this study. We would also like to thank Genetic Resources Division and Molecular Biotechnology Laboratory staffs of PhilRice-CES and Los Baños for their invaluable assistance. To Mr. Bernard O. Budot, for disease evaluation; and Ms. Gina Balleras for assistance in the insect pest’s data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Valerie G. Embate.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Embate, M.V.G., Calayugan, M.I.C., Gentallan, R.P. et al. Genetic diversity of selected pigmented traditional rice (Oryza sativa L.) varieties from Mindanao, Philippines using agromorphological traits and simple sequence repeats markers. J. Crop Sci. Biotechnol. 24, 259–277 (2021). https://doi.org/10.1007/s12892-020-00075-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-020-00075-0

Keywords

Navigation