Biological Network Analyses of WRKY Transcription Factor Family in Soybean (Glycine max) under Low Phosphorus Treatment

Abstract

WRKY transcription factor (TF) is plant specific genes and play essential roles involved in biotic and abiotic stress tolerance. Gene co-expression network (GCN) analysis is effective tool for the interpretation of transcriptomic data. In this study, a co-expression network of 152 WRKY genes using publicly available microarray data (GSE78242) was constructed under low phosphate (Pi) treatment in soybean (Glycine max). A total of 149 nodes and 641 edges were obtained from CGN and seven seed genes were identified. Particularly, Glyma.19G094100 and Glyma.16G054400 seed genes (orthologue to Arabidopsis WRKY75) were found to have a direct connection to P deficiency. Promotor analyses of seed genes revealed the variations in the number of cis-regulatory elements (CREs) ranging from 80 to 137 with a total of 835 CREs. The methylation profile of Glyma.04G218700 (orthologue to Arabidopsis WRKY51) was found higher than other seed genes. As a result, our findings can be used as a scientific basis to cope with P deficiency in soybean as well as abiotic stress tolerance. In addition, these findings of this study may prove the crop improvement studies in future, especially genetically engineered soybean plants.

This is a preview of subscription content, access via your institution.

References

  1. Albert R, Barabasi AL. 2002. Statistical mechanics of complex networks. Rev. Modern Phys. 74: 47–97

    Article  Google Scholar 

  2. Bader GD, Hogue, CW. 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4, 2. doi: 10.1186/1471-2105-4-2

    PubMed  PubMed Central  Article  Google Scholar 

  3. Bakshi M, Oelmüller R. 2014. WRKY transcription factors: Jack of many trades in plants. Plant Signal Behav. 9: e27700

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Bartels A, Han Q, Nair P, Stacey L, Gaynier H, Mosley M, Huang QQ, Pearson JK, Hsieh TF, An YC, Xiao W. 2018. Dynamic DNA methylation in plant growth and development. Int. J. Mol. Sci. 19:2144

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  5. Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X. 2010. Roles of Arabidopsis WRKY 18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol. 10:281

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Chen J, Nolan TM, Ye H, Zhang M, Tong H, Xin P, Chu J, Chu C, Li Z, Yin Y. 2017. Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant Cell 29: 1425–1439

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Chen L, Song Y, Li S, Zhang L, Zou C, Yu D. 2012. The role of WRKY transcription factors in plant abiotic stresses. Biochim. Biophys. Acta Gene Regul. Mech. 1819: 120–128

    CAS  Article  Google Scholar 

  8. Chou KC, Shen HB. 2007. Recent progress in protein subcellular location prediction. Anal. Biochem. 370: 1–16

    CAS  PubMed  Article  Google Scholar 

  9. Chow CN, Zheng HQ, Wu NY, Chien CH, Huang HD, Lee TY, Chiang-Hsieh YF, Hou PF, Yang TYI, Chang WC. 2015. PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res. 44: D1154–60

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. D’Haeseleer P. 2005. How does gene expression clustering work? Nat. Biotechnol. 23: 1499–501

    PubMed  Article  CAS  Google Scholar 

  11. Eulgem T, Rushton PJ, Robatzek S, Somssich IE. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199–206

    CAS  PubMed  Article  Google Scholar 

  12. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazor GA, et al. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44: D279–D285

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Finnegan EJ, Peacock WJ, Dennis ES. 2000. DNA methylation, a key regulator of plant development and other processes. Curr. Opin. Genet. Dev. 10: 217–223

    CAS  PubMed  Article  Google Scholar 

  14. Gao QM, Venugopal S., Navarre D, Kachroo A. 2011. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant, 464–476

    Google Scholar 

  15. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A. 2005. Protein identification and analysis tools on the ExPASy server, In: JM Walker, ed., The Proteomics Protocols Handbook, Humana Press pp. 571–607

    Google Scholar 

  16. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40: D1178–D1186

    CAS  PubMed  Article  Google Scholar 

  17. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98

    CAS  Google Scholar 

  18. Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, et al. 2012. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40: D1202–10

    CAS  PubMed  Article  Google Scholar 

  19. Li J, Brader G, Kariola T, Tapio Palva E. 2006. WRKY70 modulates the selection of signaling pathways in plant defense. Plant J. 46: 477–491

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. Li R, Liang F, Li M, Zou D, Sun S, Zhao Y, Zhao W, Bao Y, Xiao J, Zhang Z. 2018. MethBank 3.0: a database of DNA methylomes across a variety of species. Nucleic Acids Res. 46: D288–D295

    CAS  PubMed  Article  Google Scholar 

  21. Nilsson L, Müller R, Nielsen TH. 2010. Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation. Physiol. Plant 139: 129–143

    CAS  PubMed  Article  Google Scholar 

  22. Pandey SP, Roccaro M, Schön M, Logemann E, Somssich IE. 2010. Transcriptional reprogramming regulated by WRKY 18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J. 64: 912–923

    CAS  PubMed  Article  Google Scholar 

  23. Raghothama KG. 1999. Phosphate acquisition. Annu. Rev. Plant Biol. 50: 665–693

    CAS  Article  Google Scholar 

  24. Rhee SY, Mutwil M. 2014. Towards revealing the functions of all genes in plants. Trends Plant Sci. 19: 212–221

    CAS  PubMed  Article  Google Scholar 

  25. Rushton PJ, Somssich IE, Ringler P, Shen QJ. 2010. WRKY transcription factors. Trends Plant Sci. 15: 247–258

    CAS  PubMed  Article  Google Scholar 

  26. Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498–2504

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Takuno S, Ran JH, Gaut BS. 2016. Evolutionary patterns of genic DNA methylation vary across land plants. Nat. Plants 2: 15222

    CAS  PubMed  Article  Google Scholar 

  29. Tesfaye M, Liu J, Allan DL, Vance CP. 2007. Genomic and genetic control of phosphate stress in legumes. Plant Physiol. 144: 594–603

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Toronen P, Medlar A, Holm L. 2018. PANNZER2: A rapid functional annotation webserver. Nucl. Acids Res. 46: W84–W88

    CAS  PubMed  Article  Google Scholar 

  31. van Dam S, Võsa U, van der Graaf A, Franke L, de Magalhaes JP. 2018. Gene co-expression analysis for functional classification and gene-disease predictions. Brief Bioinform. 19: 575–592

    PubMed  Google Scholar 

  32. Vance CP, Uhde-Stone C, Allan DL. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157: 423–447

    CAS  Article  Google Scholar 

  33. Wang Q, Wang J, Yang Y, Du W, Zhang D, Yu D, Cheng H. 2016. A genome-wide expression profile analysis reveals active genes and pathways coping with phosphate starvation in soybean. BMC Genomics 17: 192

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. Wasaki J, Yonetani R, Kuroda S, Shinano T, Yazaki J, Fujii F, Shimbo K, Yamamoto K, Sakata K, et al. 2003. Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ. 26: 1515–1523

    CAS  Article  Google Scholar 

  35. Wu LF, Hughes TR, Davierwala AP, Robinson MD, Stoughton R, Altschuler SJ. 2002. Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nature Genet. 31: 255

    CAS  PubMed  Article  Google Scholar 

  36. Yadav BS, Mani A. 2019. Analysis of bHLH coding genes of Cicer arietinum during heavy metal stress using biological network. Physiol. Mol. Biol. Plants 25: 113, https://doi.org/10.1007/s12298-018-0625-1

    CAS  PubMed  Article  Google Scholar 

  37. Yang Y, Zhou Y, Chi Y, Fan B, Chen Z. 2017. Characterization of soybean WRKY gene family and identification of soybean WRKY genes that promote resistance to soybean Cyst nematode. Sci. Rep. 7: 17804

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. Youens-Clark K, Buckler E, Casstevens T, Chen C, Declerck G, Derwent P, Dharmawardhana P, Jaiswal P, Kersey P, Karthikeyan AS, et al. 2011. Gramene database in 2010: updates and extensions. Nucleic Acids Res. 39: D1085–94

    CAS  PubMed  Article  Google Scholar 

  39. Yu CS, Chen YC, Lu CH, Hwang JK. 2006. Prediction of protein subcellular localization. Proteins 64: 643–651

    CAS  PubMed  Article  Google Scholar 

  40. Zeng H, Wang G, Zhang Y, Hu X, Pi E, Zhu Y, Wang H, Du L. 2016. Genome-wide identification of phosphate-deficiency-responsive genes in soybean roots by high-throughput sequencing. Plant Soil 398: 207–227

    CAS  Article  Google Scholar 

  41. Zuo YC, Li QZ. 2011. Identification of TATA and TATA-less promoters in plant genomes by integrating diversity measure, GC-Skew and DNA geometric flexibility. Genomics 97: 112–20

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ertugrul Filiz.

Additional information

Compliance with ethical standards Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kurt, F., Filiz, E. Biological Network Analyses of WRKY Transcription Factor Family in Soybean (Glycine max) under Low Phosphorus Treatment. J. Crop Sci. Biotechnol. 23, 127–136 (2020). https://doi.org/10.1007/s12892-019-0102-0

Download citation

Key words

  • Bioinformatics
  • co-expression
  • Glycine max
  • phosphorus
  • WRKY