Skip to main content

Advertisement

Log in

Identification of Optimal Concentration of Silicon Application and Its Roles in Uptake of Essential Nutrients in Soybean (Glycine max L.)

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

We conducted two experiments to identify the roles of silicon (Si) application in the uptake of essential elements by soybean plants. First, we applied five concentrations (1, 2, 4, 6, and 8 mM) of Si (sodium metasilicate) to hydroponically grown soybean plants. Chlorophyll content and chlorophyll fluorescence showed improvement at 1 mM and 2 mM Si treatments as compared to that of the control. The 2 mM Si application exhibited more highly improved chlorophyll fluorescence values as compared to that of 1 mM Si treatment. We regarded 2 mM Si as the proper concentration for soybean plants. Second, we applied 2 mM of Si to 15 soybean cultivars and measured the concentration of nitrogen (N), phosphorus (P), potassium (K), and Si. Si content increased in the Si treatment; however, two cultivars (‘Dachae’ and ‘Jinpung’) showed reduced Si content despite the Si supplementation. The N and K content in several cultivars decreased after Si application to soybean plants, whereas the P content of most of cultivars was slightly increased after Si treatment. Si did not show any correlation with N, P, and K after Si treatment; however, Si exhibited a significant negative correlation (r = -0.83) with N in the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andrade FA, Júnior OA, Andrade CGTJ, Miglioranza E. 2014. Accumulation of silicon and arrangement and shapes of silica bodies in corn leaves. Genet. Mol. Res. 13: 1690–1696

    Article  CAS  PubMed  Google Scholar 

  • Bellaloui N, Hu Y, Mengistu A, Kassem MA, Abel CA. 2013. Effects of foliar boron application on seed composition, cell wall boron, and seed d15N and d13C isotopes in water-stressed soybean plants. Front. Plant Sci. 4: 270

    PubMed  PubMed Central  Google Scholar 

  • Cho YS, Jeon WT, Park CY, Park KD, Kang UG. 2006. Study of nutrient uptake and physiological characteristics of rice by 15N and purified Si fertilization level in a transplanted pot experiment. Korean J. Crop Sci. 51: 408–419

    Google Scholar 

  • Cole JC, Smith MW, Penn CJ, Cheary BS, Conaghan KJ. 2016. Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Sci. Hortic. 211: 420–430

    Article  CAS  Google Scholar 

  • Costa BNS, Dias GMG, Costa IJS, de Assis FA, da Silveira FA, Pasqual M. 2016. Effects of silicon on the growth and genetic stability of passion fruit. Acta Sci. Agron. 38: 503–511

    Article  Google Scholar 

  • Datnoff LE, Rodrigues FA, Seebold KW. 2007. Silicon and plant disease, In: LE Datnoff, WH Elmer, DM Huber, eds, Mineral Nutrition and Plant Disease, APS Press, St Paul, MN, USA. pp: 233–246

    Google Scholar 

  • Epstein E. 1999. Silicon. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 50: 641–664

    Article  CAS  PubMed  Google Scholar 

  • Gonzalo MJ, Lucena JJ, Hernández-Apaolaza L. 2013. Effect of silicon addition on soybean (Glycine max) and cucumber (Cucumis sativus) plants grown under iron deficiency. Plant Physiol. Biochem. 70: 455–461

    Article  CAS  PubMed  Google Scholar 

  • He FJ, Chen JQ. 2013. Consumption of soybean, soy foods, soy isoflavones and breast cancer incidence: differences between Chinese women and women in Western countries and possible mechanisms. Food Sci. Human Wellness 2: 146–161

    Article  Google Scholar 

  • Israel DW. 1987. Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol. 84(3): 835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang SW, Kim Y, Khan AL, Na CI, Lee IJ. 2018a. Exogenous short-term silicon application regulates macro-nutrients, endogenous phytohormones, and protein expression in Oryza sativa L. BMC Plant Biol. 18: 4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang SW, Kim Y, Na CI, Lee IJ. 2018b. Changes in mineral uptake and hormone concentrations in rice plants treated with silicon, nitrogen and calcium independently or in combination. Korean J. Crop Sci. 62: 293–303

    Google Scholar 

  • Jawahar S, Vaiyapuri V. 2013. Effect of sulphur and silicon fertilization on yield, nutrient uptake and economics of rice. Int. Res. J. Chem. 1: 34–43

    Google Scholar 

  • Kalaji H, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Lukasik I, Goltsev V, Ladle RJ. 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 38(4): 102

    Article  CAS  Google Scholar 

  • Kaya C, Tuna AL, Sonmez O, Ince F, Higgs D. 2009. Mitigation effects of silicon on maize plants grown at high zinc. J. Plant Nutr. 32: 1788–1798

    Article  CAS  Google Scholar 

  • Kim YH, Khan AL, Hamayun M, Kang SM, Beom YJ, Lee IJ. 2011. Influence of short-term silicon application on endogenous physiohormonal levels of Oryza sativa L. under wounding stress. Biol. Trace Elem. Res. 144: 1175–1185

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, Waqas M, Jung HY, Shin JH, Kim JG, Lee IJ. 2014. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol. 14: 13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YH, Khan AL, Waqas M, Lee IJ. 2017. Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: A review. Front. Plant Sci. 8: 510

    PubMed  PubMed Central  Google Scholar 

  • Lee JY, Nou IS, Kim HR. 2012. Current status in calcium biofortification of crops. J. Plant. Biotechnol. 39: 23–32

    Article  Google Scholar 

  • Liang Y, Si J, Romheld V. 2005. Silicon uptake and transport is an active process in Cucumis sativus. New Phytol. 167: 797–804

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Sun W, Zhu YG, Christie P. 2007. Mechanism of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ. Pollut. 147: 422–428

    Article  CAS  PubMed  Google Scholar 

  • Ma CC, Li QF, Gao YB, Xin TR. 2004. Effects of silicon application on drought resistance of cucumber plants. Soil Sci. Plant Nutr. 50: 623–632

    Article  Google Scholar 

  • Ma JF, Takahashi E. 2002. Soil, fertilizer, and plant silicon research in Japan. Amsterdam, The Netherlands, Elsevier Science BV

    Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M. 2007. An efflux transporter of silicon in rice. Nature. 448(7150): 209–212

    Article  CAS  PubMed  Google Scholar 

  • Mae T. 1997. Physiological nitrogen efficiency in rice: Nitrogen utilization, photosynthesis, and yield potential. Plant Soil 196: 201–210

    Article  CAS  Google Scholar 

  • Mitani N, Chiba Y, Yamaji N, Ma JF. 2009. Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell. 21: 2133–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ögren E. 1991. Prediction of photoinhibition of photosynthesis from measurements of fluorescence quenching components. Planta 184: 538–544

    Article  PubMed  Google Scholar 

  • Shen X, Zhou Y, Duan L, Li Z, Eneji AE, Li J. 2010. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J. Plant Physiol. 167: 1248–1252

    Article  CAS  PubMed  Google Scholar 

  • Silva ON, Lobato AKS, Ávila FW, Costa RCL, Oliveira Neto CF, Santos Filho BG, Martins Filho AP, Lemos RP, Pinho JM, Medeiros MBCL, Cardoso MS, Andrade IP. 2012. Silicon-induced increase in chlorophyll is modulated by the leaf water potential in two water-deficient tomato cultivars. Plant Soil Environ. 58: 481–486

    Article  CAS  Google Scholar 

  • Waqas M, Khan AL, Kang SM, Kim YH, Lee IJ. 2014. Phytohormone-producing fungal endophytes and hardwood-derived biochar interact to ameliorate heavy metal stress in soybeans. Biol. Fertil. Soils 50: 1155–1167

    Article  CAS  Google Scholar 

  • Yamaji N, Chiba Y, Mitani-Ueno N, Ma JF. 2012. Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiol. 160: 1491–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chae-In Na or Yoonha Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, YG., Park, SM., Na, CI. et al. Identification of Optimal Concentration of Silicon Application and Its Roles in Uptake of Essential Nutrients in Soybean (Glycine max L.). J. Crop Sci. Biotechnol. 22, 1–10 (2019). https://doi.org/10.1007/s12892-018-0266-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-018-0266-0

Key words

Navigation