Skip to main content
Log in

Identification and validation of cold responsive microRNAs of Hevea brasiliensis using high throughput sequencing

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Cold stress is one of the major abiotic factors that influence the productivity and geographical distribution of many agriculturally important crops like Hevea brasiliensis. Cultivation of H. brasiliensis in India is being extended to northeastern regions, where low temperature during winter adversely affects its survival, growth, and productivity. Developing cold-tolerant genotypes is a primary requisite to maximize the productivity under such challenging environmental conditions. However, lack of methods for early evaluation of cold tolerance in the newly developed clones and the extensive time required for assessing their tolerance in the field are major constraints for clonal selection. The present study was initiated with an objective to identify and characterize cold stress responsive miRNAs from H. brasiliensis that show stronger association with cold tolerance. Next generation sequencing using Illumina HiSeq method revealed the expression of 21 and 29 conserved miRNA (from clone RRIM 600) families in cold-stressed and control samples, respectively. Forty-two novel miRNAs were identified from this study. Upon differential expression analysis, eight conserved miRNAs were found commonly expressed in both the samples. When expression analyses were performed subsequently with six selected miRNAs in two Hevea clones (viz. RRII 105 and RRIM 600), miR169 showed a strong association with cold tolerance. miRNAs such as miR482 and miR159 also exhibited association with cold tolerance. This study suggests the possibility of employing these miRNAs as markers for cold tolerance after validation in more number of genotypes with varying levels of cold tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alam B, Das G, Raj S, Roy S, Pal TK, Dey SK. 2003. Studies on yield and biochemical sub-components of latex of rubber trees (Hevea brasiliensis) with special reference to the impact of low temperature in a non-optimal environment. J. Rub. Res. 6: 241–257

    CAS  Google Scholar 

  • Arenas-Huertero C, Perez B, Rabanal F, Blanco-Melo D, Rosa CD, Estrada-Navarrete G, Sanchez F, Covarrubias AA, Reyes JL. 2009. Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol. Biol. 70: 385–401

    Article  CAS  PubMed  Google Scholar 

  • Bray EA. 2004. Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55 (407): 2331–2341

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Wu Z, Jiang F, Zhou R Yang Z. 2014. Identification of chilling stress-responsive tomato microRNAs and their target genes by high-throughput sequencing and degradome analysis. BMC Genomics 15: 1130. doi: 10.1186/1471-2164-15-1130

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhang Y, Ren Y, Xu J, Zhang Z Wang Y. 2012. Genomewide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem. Biophys. Res. Commun. 417: 892–896

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K. 2006. Gene regulation during cold acclimation in plants. Physiol. Plant 126: 52–61

    Article  CAS  Google Scholar 

  • Devakumar AS, Sathik MBM, Sreelatha S, Thapliyal AP, Jacob J. 2002. Photosynthesis in mature trees of Hevea brasiliensis experiencing drought and cold stresses concomitant with high light in the field. Indian J. Nat. Rub. Res. 15(1): 1–13

    CAS  Google Scholar 

  • Foyer CH, Harbinson J. 1994. Oxygen metabolism and the regulation of photosynthetic electron transport. In: CH Foyer, PM Mullineaux, eds, Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, CRC Press, Boca Raton, FL, pp. 1–42

    Google Scholar 

  • Gebelin V, Argout X, Engchuan W, Pitollat B, Duan C, Montoro P, Leclercq J. 2012. Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets. BMC Plant Biol.. 12: 18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebelin V, Leclercq J, Argout X, Chaidamsari T, Hu S, Tang C, Sarah G, Yang M Montoro P. 2013a. The small RNA profile in latex from Hevea brasiliensis trees is affected by tapping panel dryness. Tree Physiol. 31: 1084–1098

    Article  Google Scholar 

  • Gebelin V, Leclercq J, Chaorong T, Songnian H, Tang C, Montoro P. 2013b. Regulation of MIR genes in response to abiotic stress in Hevea brasiliensis. Int. J. Mol. Sci. 14: 19587–19604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan X, Pang M, Nah G, Shi X, Ye W, Stelly DM, Chen J. 2014. miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nat. Commun. 5: 3050. doi: 10.1038/ncomms4050

    Article  PubMed  Google Scholar 

  • Jacob J, Annmalainathan K, Alam BM, Sathik MB, Thapaliyal AP, Devakumar AS. 1999. Physiological constraints for cultivation of Hevea brasiliensis in certain unfavourable agroclimatic regions of India. Indian J. Nat. Rub. Res. 12: 1–16

    Google Scholar 

  • Khraiwesh B, Zhu J-K, Zhu J. 2012. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim. Biophys. Acta 1819: 137–148

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Kim HS, Bahk S, An J, Yoo Y, Kim JY, Chung WS. 2017. Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis. Nucleic Acids Res. doi: 10.1093/ nar/gkx417.

    Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415–419

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Kim B, Song SK, Heo JO, Yu NI, Lee SA, Kim M, Kim DG, Sohn SO, Lim CE, Chang KS, Lee MM Lim J. 2008. Large-scale analysis of the GRAS gene family in Arabidopsis thaliana. Plant Mol. Biol. 67: 659–670. doi:10.1007/ s11103-008-9345-1

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Yoo SJ, Lee JH, Kim W, Yoo SK, Fitzgerald H, Carrington JC, Ahn JH. 2010. Genetic framework for floweringtime regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucleic Acids Res. 38: 3081–3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lertpanyasampatha M, Gao L, Kongsawadworakul P, Viboonjum U, Chrestin H, Liu R, Chen X, Narangaajavana J. 2012. Genome-wide analysis of microRNAs in rubber tree (Hevea brasiliensis L.) using high-throughput sequencing. Planta 236(2): 437–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC. 2008. Microarraybased analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14: 836–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4): 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Llave C, Kasschau KD, Rector MA, Carrington JC. 2002a. Endogenous and silencing-associated small RNAs in plants. Plant Cell Online 14: 1605–1619. doi: 10.1105/tpc.003210

    Article  CAS  Google Scholar 

  • Llave C, Xie ZX, Kasschau KD, Carrington JC. 2002b. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056. doi:10.1126/ science.1076311

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Sun Y-H, Chiang VL. 2008. Stress-responsive microRNAs in Populus. Plant J 55: 131–151

    Article  CAS  PubMed  Google Scholar 

  • Lv D-K, Bai X, Li Y, Ding X-D, Ge Y, Cai H, Ji W, Wu N, Zhu, Y-M. 2010. Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459: 39–47

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Hu X, Cai W, Huang W, Zhou X, Luo Q, Yang H, Wang J, Huang J. 2014. Arabidopsis miR171-targeted scarecrow-like proteins bind to GT cis-elements and mediate gibberellinregulated chlorophyll biosynthesis under light conditions. PLoS Genetics 10(8): e1004519. doi:10.1371/journal.pgen. 1004519

    Article  PubMed  PubMed Central  Google Scholar 

  • Mai J, Herbette S, Vandame M, Cavaloc E, Julien J-L, Ameglio T, Roeckel-Drevet P. 2010. Contrasting strategies to cope with chilling stress among clones of a tropical tree, Hevea brasiliensis. Tree Physiol. 30 (11): 1391–1402

    Article  PubMed  Google Scholar 

  • Maxwell K, Johnson GN. 2000. Chlorophyll fluorescence-a practical guide. J. Exp. Bot. 51: 659–668

    Article  CAS  PubMed  Google Scholar 

  • Meti S, Meenattoor R, Mondal GC, Chaudhuri D. 2003. Impact of cold weather condition in the growth of Hevea brasiliensis clones in Northern West Bengal. Indian J. Nat. Rub. Res. 16(1&2): 53–59

    CAS  Google Scholar 

  • Miura K, Furumoto T. 2013. Cold signaling and cold response in plants. Int. J. Mol. Sci. 14: 5312–5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni Z, Hu Z, Jiang Q, Zhang H. 2013. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol. Biol. 82: 113–129. doi. 10.1007/s11103-013-0040-5

    Article  CAS  PubMed  Google Scholar 

  • Ou Y, Liu X, Xie C, Zhang H, Lin Y, Li M, Song B, Liu J. 2015. Genome-wide identification of microRNAs and their targets in cold-stored potato tubers by deep sequencing and degradome analysis. Plant Mol. Biol. Report 33: 584. doi:10.1007/s11105-014-0771-8

    Article  CAS  Google Scholar 

  • Priyadarshan PM, Hoa TT, Huasun H, Gonçalves PS. 2005. Yielding potential of rubber (Hevea brasiliensis) in suboptimal environments. J. Crop Improv. 14: 221–247

    Article  Google Scholar 

  • Ray D, Raj S, Das G, Dey SK. 2004. Reduced membrane damage and higher LEA protein content under low temperature: Probable causes for delayed defoliation of Hevea in North East India. Nat. Rub. Res. 17(1): 79–85

    Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. 2002. MicroRNAs in plants. Genes Dev. 16: 1616–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reju MJ, Thapliyal AP, Deka HK, Soman TA, Nazeer MA. 2003. Growth stability of Hevea clones in a high altitude region in Meghalaya. Indian J. Nat. Rub. Res. 16(1&2): 118–121

    Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. 2002. Prediction of plant microRNA targets. Cell 110: 513–520

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Kubien DS. 2007. The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30: 1086–1106

    Article  CAS  PubMed  Google Scholar 

  • Sathik MBM, Kuruvilla L, Thomas M, Luke PL, Satheesh PR, Annamalainathan K, Jacob J. 2012. Quantitative expression analysis of stress responsive genes under cold stress in Hevea brasiliensis. Rubber Sci. 25(2): 199–213

    CAS  Google Scholar 

  • Sathik MBM, Vijayakumar KR, James J, Sethuraj MR. 1998. Membrane stability as measured by electrolyte leakage: A tool for screening Hevea clones for cold tolerance. In: Proceedings of PLACROSYM XII, Developments in Plantation Crops Research, 136–138

    Google Scholar 

  • Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BACM, Baulcombe DCA (2012) MicroRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24: 859–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Li Y, Jagadeeswaran G. 2012. Functions of microRNAs in plant stress responses. Cell 17: 196–203

    CAS  Google Scholar 

  • Sunkar R, Zhu JK. 2004. Novel and stress-related microRNAs and other small RNAs from Arabidopsis, Plant Cell 16 2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zheng Y, Zhao C. 2012. Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. Plant Physiol. 159: 721–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow MF. 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Biol. 50(1): 571–599

    Article  CAS  Google Scholar 

  • Valiollahi E, Farsi M, Kakhki AM. 2014. Sly-miR166 and Sly-miR319 are components of the cold stress response in Solanum lycopersicum. Plant Biotechnol. Rep. 8: 349–356. DOI 10.1007/s11816-014-0326-3

    Article  Google Scholar 

  • Wang Q, Liu N, Yang X, Tu L, Zhang X. 2016. Small RNAmediated responses to low-and high-temperature stresses in cotton. Sci Rep 6: 35558 doi:10.1038/srep35558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Mai YX, Zhang YC, Luo QA, Yang HQ. 2010. MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. Mol. Plant 3: 794–806. doi:10.1093/mp/ssq042

    Article  PubMed  Google Scholar 

  • Zhang J, Xu Y, Huan Q, Chong K. 2009. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10: 449

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhu X, Chen X, Song C, Zou Z, Wang Y, Wang M, Fang W, Li X. 2014. Identification and characterization of cold responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. BMC Plant Biol. 14: 271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao JP, Diao S, Zhang BY, Niu BQ, Wang Q-L, Wan X-C, Luo Y-Q. 2012. Phylogenetic Analysis and Molecular Evolution Patterns in the MIR482-MIR1448 Polycistron of Populus L. PLoS ONE 7(10): e47811. doi: 10.1371/journal.pone.0047811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Wang G, Sutoh K, Zhu, JK, Zhang W. 2008. Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim. Biophys. Acta 1779: 780–788

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Dong CH, Zhu JK. 2007. Interplay between coldresponsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10 (3): 290–295

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q-w, Luo Y-p. 2013. Identification of miRNAs and their targets in tea (Camellia sinensis). J. Zhejiang Univ. Sci. B. 14(10): 916–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MB Mohamed Sathik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuruvilla, L., Sathik, M.M., Thomas, M. et al. Identification and validation of cold responsive microRNAs of Hevea brasiliensis using high throughput sequencing. J. Crop Sci. Biotechnol. 20, 369–377 (2017). https://doi.org/10.1007/s12892-017-0062-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-017-0062-0

Keywords