Journal of Crop Science and Biotechnology

, Volume 20, Issue 3, pp 205–212 | Cite as

Phytochemical distribution and antioxidant activities of Korean adzuki bean (Vigna angularis) landraces

Research Article

Abstract

Total polyphenol content (TPC), total phenolic acid content (TPA), and total flavonoid content (TFC) in 209 Korean adzuki bean landraces were determined by colorimetric methods. Antioxidant effects were evaluated with the DPPH, ABTS, ferric reducing antioxidant power (FRAP), reducing power (RP), and SOD assays. TPC, TPA, and TFC in the 209 Korean adzuki bean landraces ranged from 1.1 to 11.7 mg gallic acid equivalents/g, 0.37 to 5.03 mg caffeic acid equivalents/g, and 0.17 to 0.91 mg quercetin equivalents/g, respectively. Antioxidant activities as assessed by the DPPH, ABTS, FRAP, PR, and SOD assays showed wide variation, ranging from 12.2 to 86.3 (IC50), 0.85 to 5.25 mg ascorbic acid equivalents (ASC)/g, 0.41 to 5.44 mg ASC/g, 0.54 to 1.83 mg ASC/g, and 60.4 to 142.8 (IC50), respectively. Using the relative antioxidant capacity index (RACI), we found that the IT189394 had the highest antioxidant activity. In clustering analysis, 209 Korean adzuki bean landraces were classified into three clusters. Among them, cluster I contained 22 landraces with higher antioxidant activities, TPC, TFC, and TPA and smaller seed sizes than the other clusters. We anticipate that these results will provide useful information for the development of adzuki bean-based functional foods.

Keywords

Adzuki beans antioxidant activity Korean landraces phytochemicals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amarowicz R, Estrella I, Hernandez T, Troszynska A. 2008. Antioxidant activity of extract of adzuki bean and its fractions. J. Food Lipids 15: 119–136CrossRefGoogle Scholar
  2. Baik BK, Klamczynska B, Czuchajowska Z. 1998. Particle size of unsweetened azuki paste as related to cultivar and cooking time. J. Food Sci. 63: 322–326CrossRefGoogle Scholar
  3. Dudonne S, Vitrac X, Coutiere P, Woillez M, Merillon JM. 2009. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agr. Food Chem. 57: 1768–1774CrossRefGoogle Scholar
  4. Ferguson AR. 2007. The need for characterisation and evaluation of germplasm: kiwifruit as an example. Euphytica 154: 371–382CrossRefGoogle Scholar
  5. Hammer O, Harper DAT, Ryan PD. 2001. PAST: paleontological statistics software package for education and data analysis. Paleontol. Electron. 4: 1–9Google Scholar
  6. Hori Y, Sato S, Hatai A. 2006. Antibacterial activity of plant extracts from azuki beans (Vigna angularis) in vitro. Phytother. Res. 20: 162–164CrossRefPubMedGoogle Scholar
  7. Kato J, Hosoya E, Ichikawa N, Meguro T. 1994. The relationship between seed size of adzuki beans and ann particles. Bull. Hokkaido Pref. Agr. Exp. Stat. 66: 15–23Google Scholar
  8. Kim EH, Song HK, Park YJ, Lee JR, Kim MY, Chung I-M. 2011. Determination of Phenolic Compounds in Adzuki bean (Vigna angularis) Germplasm Kor. J. Crop Sci. 56: 375–384Google Scholar
  9. Lee DJ, Lee JY. 2004. Antioxidant activity by DPPH assay. Kor. J. Crop Sci. 49: 187–194Google Scholar
  10. Luo JQ, Cai WX, Wu T, Xu BJ. 2016. Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chem. 201: 350–360CrossRefPubMedGoogle Scholar
  11. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231–1237CrossRefGoogle Scholar
  12. Rho CW, Son SY, Hong ST, Lee KH, Ryu IM. 2003. Agronomic characters of Korean Adzuki Beans (Vigna angularis (Willd.) Ohwi & Ohashi). Kor. J. Plant Res. 16: 147–154Google Scholar
  13. Rice-Evans CA, Miller J, Paganga G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2: 152–159CrossRefGoogle Scholar
  14. Robak J, Gryglewski RJ. 1988. Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol. 37: 837–841CrossRefPubMedGoogle Scholar
  15. Sato S, Hori Y, Yamate J, Saito T, Kurasaki M, Hatai A. 2005. Protective effect of dietary azuki bean (Vigna angularis) seed coats against renal interstitial fibrosis of rats induced by cisplatin. Nutrition 21: 504–511CrossRefPubMedGoogle Scholar
  16. Shi Z, Yao Y, Zhu Y, Ren G. 2017. Nutritional composition and biological activities of 17 Chinese adzuki bean (Vigna angularis) varieties. Food Agri. Immunol. 28: 78–89CrossRefGoogle Scholar
  17. Singh V, Guizani N, Essa MM, Hakkim FL, Rahman MS. 2012. Comparative analysis of total phenolics, flavonoid content and antioxidant profile of different date varieties (Phoenix dactylifera L.) from Sultanate of Oman. Int. Food Res. J. 19: 1063–1070Google Scholar
  18. Song SB, Seo HI, Ko JY, Lee JS, Kang JR, Oh BG, Seo MC, Yoon YN, Kwak DY, Nam MH, Woo KS. 2011. Quality characteristics of adzuki beans sediment according to variety. J. Kor. Soc. Food Sci. Nutr. 40: 1121–1127CrossRefGoogle Scholar
  19. Sosulski FW, Dabrowski KJ. 1984. Composition of free and hydrolyzable phenolic acids in the flours and hulls of ten legume species. J. Agr. Food Chem. 32: 131–133CrossRefGoogle Scholar
  20. Sreerama YN, Takahashi Y, Yamaki K. 2012. Phenolic Antioxidants in Some Vigna Species of Legumes and their Distinct Inhibitory Effects on a-Glucosidase and Pancreatic Lipase Activities. J. Food Sci. 77: C927–C933CrossRefPubMedGoogle Scholar
  21. Sun T, Tanumihardjo SA. 2007. An integrated approach to evaluate food antioxidant capacity. J. Food Sci. 72: R159–R165CrossRefPubMedGoogle Scholar
  22. Szaufer-Hajdrych M. 2004. Phenlic acids in leaves of species of the Aquilegia genus. Herba Pol 50: 10–14Google Scholar
  23. Upadhyaya HD, Reddy KN, Gowda CLL, Singh S. 2010. Identification and evaluation of vegetable type pigeonpea (Cajanus cajan (L.) Millsp.) in the world germplasm collection at ICRISAT genebank. Plant Genet. Resour-C. 8: 162–170CrossRefGoogle Scholar
  24. van Treuren R, van Hintum TJL. 2003. MARKER-ASSISTED REDUCTION OF REDUNDANCY INGERMPLASM COLLECTIONS: GENETIC AND ECONOMIC ASPECTS. In 623 edn. International Society for Horticultural Science (ISHS), Leuven, Belgium, pp 139–149Google Scholar
  25. Wang T, He ZQ, Liang YQ, Yu BJ. 2001. Effect of cowpea, mung bean and adzuki bean on plasma glucose after meal. J. Food Sci. 22: 74–76Google Scholar
  26. Waterhouse AL. 2001. Determination of Total Phenolics. Current Protocols in Food Analytical Chemistry. John Wiley & Sons, Inc.Google Scholar
  27. Woo KS, Song SB, Ko JY, Kom YB, Kim WH, Jeong HS. 2016. Antioxidant properties of adzuki beans, and quality characteristies of sediment according to cultivated methods. Kor. J. Food Nutr. 29: 134–143CrossRefGoogle Scholar
  28. Yao Y, Sang W, Zhou MJ, Ren GX. 2010. Antioxidant and alpha-Glucosidase Inhibitory Activity of Colored Grains in China. J. Agr. Food Chem. 58: 770–774CrossRefGoogle Scholar
  29. Yen GC, Duh PD. 1993. Antioxidative Properties of Methanolic Extracts from Peanut Hulls. J. Am. Oil Chem. Soc. 70: 383–386CrossRefGoogle Scholar
  30. Yousif AM, Kato J, Deeth HC. 2007. Effect of Storage on the Biochemical Structure and Processing Quality of Adzuki Bean (Vigna angularis). Food Rev. Int. 23: 1–33CrossRefGoogle Scholar
  31. Zlotek U, Szymanowska U, Baraniak B, MK. 2015. Antioxidant activity of polyphenols of Adzuki bean (Vigna angularis) germinated in abiotic stress conditions. Acta. Sci. Pol. Technol. Aliment. 14: 55–62CrossRefPubMedGoogle Scholar

Copyright information

© Korean Society of Crop Science and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.National Agrobiodiversity CenterNational Institute of Agricultural Sciences (NAS), RDAWansan-Gu, Jeonju-Si, Jeollabuk-DoRepublic of Korea
  2. 2.Dept. of Industrial Plant Science & TechnologyChungbuk National UniversityCheongjuRepublic of Korea

Personalised recommendations