Skip to main content
Log in

Evaluation of carbon sources, gelling agents, growth hormones and additives for efficient callus induction and plant regeneration in Indian wheat (Triticum aestivum L.) genotypes using mature embryos

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Various factors affecting in vitro regeneration like different carbon sources, different gelling agents, and growth additives were assessed comprehensively for callus induction and plant regeneration for five Indian wheat cultivars using mature embryos as the explants for the first time. The tissue culture responses of cultivars WH-1105, HD-2967, and PBW-343 have not been reported earlier. Besides, the effect of different concentrations of the cytokinin, zeatin has also been optimized. Using the optimized factors, the efficiency of five different varieties, i.e., HD 2967, C 306, RAJ 3765, WH 1105, and PBW 343 was evaluated for regeneration. Modified MS basal medium containing dicamba reduced precocious germination of the embryo and induced embryogenic callus more efficiently. Removal of embryogenic calli from non-regenerable structures during early callus phase improved plant regeneration. These calli on zeatin (1.0 mgl-1) and dicamba (0.1 mgl-1) containing medium showed the highest regeneration frequency (98%) with a maximum of 8-9 shoots per calli. Maltose had the maximum callusing and regeneration percentage than other carbon sources. Various gelling agents did not have any significant difference on the regeneration. Of all the varieties, C-306 and HD-2967 were found to be more regenerative and can be used in transformation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdollah HA, Said AGE, Khalafalla MM. 2014. Embryogenesis and plantlet regeneration optimization of wheat (Triticum aestivum L.). J. Agric. Technol. 10, 679–693

    CAS  Google Scholar 

  • Afzal A, Rashid H, Khan MH, Chaudhry Z, Malik SA. 2010. High frequency regeneration system optimization for wheat cultivar inqilab-91. Pak. J. Bot. 42, 1857–1862

    CAS  Google Scholar 

  • Ahmad A, Zhong H, Wang W, Sticklen MB. 2002. Shoot apical meristem: in vitro regeneration and morphogenesis in wheat (Triticumaestivum L.). In Vitro Cell. Dev. Biol. Plant, 38, 163–167

    Article  Google Scholar 

  • Aydin M, Tosun M, Haliloglu K. 2011. Plant regeneration in wheat mature embryo culture. Afr. J. Biotechnol, 10, 15749–15755

    CAS  Google Scholar 

  • Barro F, Martin A, Lazzeri PA, Barceló P. 1999. Medium optimization for efficient somatic embryogenesis and plant regeneration from immature inflorescences and immature scutella of elite cultivars of wheat, barley and tritordeum. Euphytica 108, 161–167

    Article  Google Scholar 

  • Benkirane H, Sabounji K, Chlyah A, Chlyah H. 2000. Somatic embryogenesis and plant regeneration from fragments of immature inflorescences and coleoptiles of durum wheat. Plant Cell Tiss. Organ Cult. 61, 107–113

    Article  Google Scholar 

  • Bi RM, Kou M, Chen LG, Mao SR, Wang HG. 2007. Plant regeneration through callus initiation from mature embryo of Triticum. Plant Breed. 126, 9–12

    Article  CAS  Google Scholar 

  • Boyko A, Matsuoka A, Kovalchuk I. 2009. High frequency Agrobacterium tumefaciens-mediated plant transformation induced by ammonium nitrate. Plant Cell Rep.; 28, 737–757

    Article  CAS  PubMed  Google Scholar 

  • Chauhan H, Desai SA, Khurana P. 2007. Comparative analysis of the differential regeneration response of various genotypes of Triticum aestivum, Triticum durum and Triticum dicoccum. Plant Cell Tiss. Organ Cult. 91, 191–199

    Article  CAS  Google Scholar 

  • Chen JY, Yue RQ, Xu HX, Chen XJ. 2006. Study on plant regeneration of wheat mature embryos under endosperm-supported culture. Agric. Sci.China, 5, 572–578

    Article  CAS  Google Scholar 

  • Coskun Y, Duran RE, Savaskan C, Demirci T, Hakan MT. 2013. Efficient plant regeneration with arabinogalactan-proteins on various ploidy levels of cereals. J. Integr. Agric. 12, 420–425

    Article  Google Scholar 

  • Delporte F, Mostade O, Jacquemin JM. 2001. Plant regeneration through callus initiation from thin mature embryo fragments of wheat. Plant Cell Tiss. Organ Cult. 67, 73–80

    Article  CAS  Google Scholar 

  • Delporte F, Pretova A, Du Jardin P, Watillon B. 2014. Morphohistology and genotype dependence of in vitro morphogenesis in mature embryo cultures of wheat. Protoplasma 251: 1455–1470

    Article  PubMed  PubMed Central  Google Scholar 

  • Duran RE, Coskun Y, Demrici T. 2013. Comparison of amino acids for their efficiency of regeneration in wheat embryo culture. Asian J. Plant Sci.Res. 3, 115–119

    CAS  Google Scholar 

  • Eudes F, Acharya S, Laroche A, Selinger LB, Cheng KJ. 2003. A novel method to induce direct somatic embryogenesis, secondary embryogenesis and regeneration of fertile green cereal plants. Plant Cell Tiss. Organ Cult. 73, 147–157

    Article  CAS  Google Scholar 

  • Fahmy AH, El-Mangoury K, Ibrahim AS, Muthukrishnam S. 2012. Comparative evaluation of different reliable in vitro regeneration of various elite Egyptian wheat cultivars regarding callus induction and regeneration media influence. Res. J. Agric.Biol.Sci. 8, 344–353

    Google Scholar 

  • FAOSTAT, D., 2013. Food and agriculture organization of the United Nations. Statistical database. (http://www.faostat.fao.org/)

    Google Scholar 

  • Fehér A. 2005. Why somatic plant cells start to form embryos? In: Somatic embryogenesis (pp. 85–101). Springer Berlin Heidelberg. doi: 10.1007/708_019

    Google Scholar 

  • Filippov M, Miroshnichenko D, Vernikovskaya D, Dolgov S. 2006. The effect of auxins, time exposure to auxin and genotypes on somatic embryogenesis from mature embryos of wheat. Plant Cell Tiss. Organ Cult. 84, 213–222

    Article  CAS  Google Scholar 

  • Ganeshan S, Båga M, Harvey BL, Rossnagel BG, Scoles GJ, Chibbar RN. 2003. Production of multiple shoots from thidiazuron-treated mature embryos and leaf-base/apical meristems of barley (Hordeumvulgare). Plant Cell Tiss. Organ Cult. 73, 57–64

    Article  CAS  Google Scholar 

  • Ganeshan S, Chodaparambil SV, Båga M, Fowler DB, Hucl P, Rossnagel BG, Chibbar RN. 2006. In vitro regeneration of cereals based on multiple shoot induction from mature embryos in response to thidiazuron. Plant Cell Tiss. Organ Cult. 85, 63–73

    Article  CAS  Google Scholar 

  • Greer MS, Kovalchuk I, Eudes F. 2009. Ammonium nitrate improves direct somatic embryogenesis embryogenesis and biolistic transformation of Triticum aestivum. New Biotechnol. 26, 44–52

    Article  CAS  Google Scholar 

  • Hafeez I, Sadia B, Sadaqat NA, Kainth RA, Iqbal MZ, Khan IA. 2014. Establishment of efficient in vitro culture protocol for wheat land races of Pakistan. Afr. J. Biotechnol. 11, 2782–2790

    Google Scholar 

  • He GY, Lazzeri PA. 2001. Improvement of somatic embryogenesis and plant regeneration from durum wheat (Triticum turgidum var. durum Desf.) scutellum and inflorescence cultures. Euphytica 119, 369–376

    Article  CAS  Google Scholar 

  • Hiei Y, Ishida Y, Komari T. 2014. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Front. Plant Sci. doi: 10. 3389/fpls. 2014. 00628

    Google Scholar 

  • Jones HD. 2005. Wheat transformation: current technology and applications to grain development and composition. J. Cereal Sci. 41, 137–147

    Article  CAS  Google Scholar 

  • Kereša S, Baric M, Šarcevic H, Gunjaca J. 2004. Influence of zeatin on wheat regeneration from immature embryos. Agric. Conspec. Sci. 69, 17–20

    Google Scholar 

  • Kumar GP, Subiramani S, Govindarajan S, Sadasivam V, Manickam V, Mogilicherla K, Thiruppathi SK, Narayanasamy J. 2015. Evaluation of different carbon sources for high frequency callus culture with reduced phenolic secretion in cotton (Gossypium hirsutum L.) cv. SVPR-2. Biotechnol. Rep. 7, 72–80

    Article  Google Scholar 

  • Mehmood K, Arshad M, Muhammad-Ali G, Razzaq A. 2013. Tissue culture responses of some wheat (Triticum aestivum L.) cultivars grown in Pakistan. Pak. J. Bot. 45, 545–549

    Google Scholar 

  • Mendoza MG, Kaeppler, HF. 2002. Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L.). In Vitro Cell. Dev. Biol. Plant, 38, 39–45

    Article  CAS  Google Scholar 

  • Miroshnichenko D, Chernobrovkina M, Dolgov S. 2016. Somatic embryogenesis and plant regeneration from immature embryos of Triticum timopheevii. Plant Cell Tiss. Organ Cult. 125, 495–508

    Article  CAS  Google Scholar 

  • Moghaieb RE, El-Arabi NI, Momtaz OA, Youssef SS, Soliman MH. 2010. Genetic transformation of mature embryos of bread (T. aestivum) and pasta (T. durum) wheat genotypes. GM Crops, 1, 87–93

    PubMed  Google Scholar 

  • Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497

    Article  CAS  Google Scholar 

  • Murín R, Mészáros K, Nemecek P, Kuna R, Faragó J. 2012. Regeneration of immature and mature embryos from diverse sets of wheat genotypes using media containing different auxins. Acta Agron. Hung. 60, 97–108

    Article  Google Scholar 

  • Özgen M, Melahat AB, Berk B. 2015. Biotechnological characterization of a diverse set of wheat progenitors (Aegilops sp. and Triticum sp.) using callus culture parameters. Plant Genet. Resour. doi: 10. 1017/S1479262115000350

    Google Scholar 

  • Özgen M, Türet M, Özcan S, Sancak C. 1996. Callus induction and plant regeneration from immature and mature embryos of winter durum wheat genotypes. Plant Breed. 115, 455–458

    Article  Google Scholar 

  • Parmar SS, Sainger M, Chaudhary D, Jaiwal PK. 2012. Plant regeneration from mature embryo of commercial Indian bread wheat (Triticum aestivum L.) cultivars. Physiol. Mol.Biol. Plants 18, 177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren JP, Wang XG, Jun Y. 2010. Dicamba and sugar effects on callus induction and plant regeneration from mature embryo culture of wheat. Agric. Sci. China, 9, 31–37

    Article  CAS  Google Scholar 

  • Sahoo KK, Tripathi AK, Pareek A, Sopory SK, Singla-Pareek SL. 2011. An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Meth. 7, 49 DOI: 10. 1186/1746-4811-7-49

    Article  CAS  Google Scholar 

  • Salari A, Sharma A, Muthusamy SK, Singh SK, Chinnusamy V, Bansal KC. 2013. An improved protocol for high frequency plant regeneration from mature embryos of wheat. Proceedings Indian National Science Academy, 79, 159–166

    CAS  Google Scholar 

  • Sales EK, Butardo NG. 2014. Molecular analysis of somaclonal variation in tissue culture derived bananas using MSAP and SSR markers. Int. J. Biol. Vet. Agric. Food Eng. 8, 63–610

    Google Scholar 

  • Sarker KK, Kabir AH, Sharmin SA, Nasrin Z, Alam MF. 2007. Improved somatic embryogenesis using L-asparagine in wheat (Triticum aestivum L.). Sjemenarstvo 24, 187–196

    Google Scholar 

  • Schulze J. 2007. Improvements in cereal tissue culture by thidiazuron: a review. Fruit Veg. Cereal Sci. Biotechnol. 1, 64–79

    Google Scholar 

  • Shan X, Li D, Qu R. 2000. Thidiazuron promotes in vitro regeneration of wheat and barley. In Vitro Cell. Dev. Biol. Plant, 36, 207–210

    Article  CAS  Google Scholar 

  • Sharma VK, Hänsch R, Mendel RR, Schulze J. 2007. Node-derived cultures with high-morphogenic competence in barley and wheat. Plant Cell Tiss. Organ Cult. 88, 21–33

    Article  Google Scholar 

  • Singh RK, Prasad M. 2016. Advances in Agrobacterium tumefaciens mediated genetic transformation of graminaceous crops. Protoplasma 253, 691–707

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Zhong J, Li S, Wang X. 2013. Tissue culture induced somaclonal variation of decreased pollen viability in torenia (Torenia fournieri L.) Bot. Studies, 54, 36, doi 10. 1186/1999-3110-54-36

    Google Scholar 

  • Tang ZX, Ren ZL, Feng WU, Fu SL, Wang XX, Zhang HQ. 2006. The selection of transgenic recipients from new elite wheat cultivars and study on its plant regeneration system. Agric. Sci. China, 5, 417–424

    Article  CAS  Google Scholar 

  • Tiwari VK, Heesacker A, Riera-Lizarazu O, Gunn H, Wang S, Wang Y, Gu YQ, Paux E, Koo DH, Kumar A, Luo MC. 2016. A whole-genome, radiation hybrid mapping resource of hexaploid wheat. Plant J. 86, 195–207

    Article  CAS  PubMed  Google Scholar 

  • Vasil IK. 2005 The story of transgenic cereals: the challenge, the debate, and the solution-a historical perspective. In Vitro Cell. Dev. Biol. Plant, 41, 577–583

    Article  Google Scholar 

  • Wang CT, Wei ZM (2004) Embryogenesis and regeneration of green plantlets from wheat (Triticum aestivum) leaf base. Plant Cell Tiss. Organ Cult. 77, 149–156

    Article  CAS  Google Scholar 

  • Wu H, Doherty A, Jones HD. 2009. Agrobacterium-mediated transformation of bread and durum wheat using freshly isolated immature embryos. Transgenic Wheat, Barley and Oats: Production and Characterization Protocols, 478, 93–103

    Article  Google Scholar 

  • Xia L, Ma Y, He Y, Jones, HD. 2012. GM wheat development in China: current status and challenges to commercialization. J. Exp. Bot. 63, 1785–1790

    Article  CAS  PubMed  Google Scholar 

  • Yin GX, Wang YL, She MY, Du LP, Xu HJ, Ye XG. 2011. Establishment of a highly efficient regeneration system for the mature embryo culture of wheat. Agric. Sci. China, 10, 9–17

    Article  CAS  Google Scholar 

  • Yu H, Wang W, Wang Y, Hou B. 2012. High frequency wheat regeneration from leaf tissue explants of regenerated plantlets. doi: 10. 4236/abb. 2012. 31008

    Google Scholar 

  • Yu Y, Wang J, Zhu ML, Wei ZM. 2008. Optimization of mature embryo-based high frequency callus induction and plant regeneration from elite wheat cultivars grown in China. Plant Breed. 127, 249–255

    Article  CAS  Google Scholar 

  • Zale JM, Borchardt-Wier H, Kidwell KK, Steber CM. 2004. Callus induction and plant regeneration from mature embryos of a diverse set of wheat genotypes. Plant Cell Tiss. Organ Cult. 76, 277–281

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan K. Jaiwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, K., Birla, D., Yadav, H. et al. Evaluation of carbon sources, gelling agents, growth hormones and additives for efficient callus induction and plant regeneration in Indian wheat (Triticum aestivum L.) genotypes using mature embryos. J. Crop Sci. Biotechnol. 20, 185–192 (2017). https://doi.org/10.1007/s12892-017-0046-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-017-0046-0

Keywords

Navigation