Skip to main content
Log in

Association of DREB Genes and Microsatellite Markers Linked to NAX2 with Salt Tolerance in CIMMYT-derived Triticale, Wheat and Rye Genotypes

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Twenty-eight genotypes including triticale, wheat and rye were grown in a greenhouse under control, 14 and 21 dS/m salinity (NaCl and CaCl2, 1:1 ratio) levels to assess variations in agronomic traits, and to assess association of dehydration responsive elements (DREB genes) and five microsatellite (SSR) markers with salt tolerance. The results of grain yield variation and principal component (PC) analysis for statistical indices revealed that the first PC under 14 and 21 dS/m salinity levels was associated with salt tolerance. Five microsatellite (Xgwm291, Xgwm312, Xgwm410, Xgwm2181 and Xgwm126) and two DREB (DREB1 and DREB2) markers were used for detection of polymorphism. In total, 35 alleles ranging from 130 to 850 bp in size were identified of which, 25 alleles were found for SSR markers and 10 belonged to DREB genes. The number of alleles ranged from 3 to 9 with an average of 5 per primer. The polymorphic information content (PIC) value ranged from 0.51 (Xgwm291) to 0.77 (DREB1) with an average of 0.68. The Xgwm291 primer amplified 3 bands (130, 160 and 185 bp) in triticale and wheat but neither were detected in rye. Remarkably, the 130 bp band was amplified in TRT826 which was categorized as salt tolerant on the basis of K+/Na+ ratio and grain yield variations. Accordingly, this band could be associated with salt tolerance and its isolation and sequencing could clarify its characteristics for possible use in marker assisted breeding (MAB) for salt tolerance in triticale and wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abdel–Hamid AM. 2014. Physiological and molecular markers for salt tolerance in four barley cultivars. Eur. Sci. J. ESJ. 2014 Jan 31: 10(3)

    Google Scholar 

  • Agrawal PK, Agrawal P, Reddy MK, Sopory SK. 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25: 1263–1247

    Article  CAS  Google Scholar 

  • Agarwal P, Agarwal PK, Nair S, Sopory SK, Reddy MK. 2007. Stress–inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA–binding activity. Mol. Genet. Genomics 277: 189–198

    Article  CAS  PubMed  Google Scholar 

  • Arzani A. 2008. Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cell Dev. Biol. Plant. 44: 373–383

    Article  CAS  Google Scholar 

  • Badea C. 2012. Identification of dehydration tolerance in triticale (×Triticosecale Wittmack) seedlings. Ms.C thesis. Department of Agriculture, Food and Nutritional Science.

    Google Scholar 

  • Edmonton, Alberta–Batool N, Ilyas N, Shahzad A, Arshad M, Ul–Hassan F. 2016. Evaluation of Wheat genotypes on the basis of physiological indices under salt stress. Pure Appl. Biol. 5: 1183–1192

    Google Scholar 

  • Bhutta WM, Amjad M. 2015. Molecular characterization of salinity tolerance in wheat (Triticum aestivum L.). Archives Agron. Soil Sci. 16: 1641–1648

    Google Scholar 

  • Blum A. 2014. The abiotic stress response and adaptation of triticale–A Review. Cereal Res. Commun. 42: 359–375

    Article  Google Scholar 

  • Boyd CE. 1999. Water Quality: An Introduction. The Netherlands: Kluwer Academic Publishers Group. ISBN. 0–7923–7853–9

    Google Scholar 

  • Bousba R, Baum M, Djekoune A, Labadidi S, Djighly A. 2012. Screening for drought tolerance using molecular markers and phenotypic diversity in durum wheat genotypes. World Appl. Sci. J. 16: 1219–1226

    Google Scholar 

  • Budak H, Hussain B, Khan Z, Ozturk NZ, Ullah N. 2015. From genetics to functional genomics: improvement in drought signaling and tolerance in wheat. Front. Plant Sci. 6: 1–13

    Article  Google Scholar 

  • Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R. 2007. HKT1:5–like cations transporters linked to Na+ exclusion loci in wheat, NAX2 and Knak1[OA]. Plant Physiol. 143: 1918–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP. 2008. Overexpression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett. 30: 2191–2198

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu J. 2004. Molecular genetic perspectives on cross–talk and specificity in abiotic stress signalling in plants. J. Exp. Bot. 55: 225–236

    Article  CAS  PubMed  Google Scholar 

  • Diaz de Leonَ JL, Escoppinichi R, Geraldo N, Castellanos T, Mujeeb–Kazi A, Rodِer MS. 2011. Quantitative trait loci associated with salinity tolerance in field grown bread wheat. Euphytica 181: 371–383

    Article  Google Scholar 

  • Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi, S. 2006. Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet. Syst. 81: 77–91

    Article  CAS  PubMed  Google Scholar 

  • Fernandez GCJ. 1992. Effective selection criteria for assessing plant stress tolerance In: Adaptation of Food Crops to Temperature and Water Stress, CG Kuo (ed.), AVRDC. Shanhua. Taiwan 257–270

    Google Scholar 

  • Fioj Kordasht R, Heidari B, Dadkhodaie A. 2016. Investigation of triticale and wheat performance under dry land conditions on the basis of variations in agronomic and morphological traits. J. Adv. Biol. Biotechnol. 7: 1–9

    Article  Google Scholar 

  • Fischer RA, Maurer R. 1978. Drought resistance in spring wheat cultivars. Part 1: grain yield response. Aust. J. Agric. Res. 29: 897–912

    Google Scholar 

  • Frankenberger WT, Tabatabai MA, Adriano DC, Doner HE. 1996. Bromine, chlorine, and fluorine. 833–868

    Google Scholar 

  • Fujita Y, Fukuouka H, Yano H. 2009. Identification of wheat cultivars using EST–SSR markers. Breed. Sci. 59: 159–167

    Article  CAS  Google Scholar 

  • Gao F, Chen JM, Xiong AS, Peng RH, Liu JG, Cai B, Yao QH. 2009. Isolation and characterization of a novel AP2/EREBP–type transcription factor OsAP211 in Oryza sativa. Biol. Planta. 53: 643–649

    Article  CAS  Google Scholar 

  • Genc Y, Oldach K, Verbyla AP, Lott G, Hassan M., Tester M, Wallwork H, McDonald G.K. 2010. Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor. Appl. Genet. 121: 877–894

    Article  CAS  PubMed  Google Scholar 

  • Giunta F, Motzo R. 2004. Sowing rate and cultivar affect total biomass and grain yield of spring triticale (×Triticosecale Wittmack) grain in a Mediterranean–type environment. Field Crops Res. 87: 193–197

    Article  Google Scholar 

  • Gorham J, Wyn Jones RG, Bristol A. 1990. Partial characterization of the trait for enhanced K+–Na+ discrimination in the D genome of wheat. Planta. 180: 590–597

    Article  CAS  PubMed  Google Scholar 

  • Gutha LR, Reddy AR. 2008. Rice DREB 1B promoter shows distinct stress–specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Mol. Biol. 68: 533–555

    Article  CAS  PubMed  Google Scholar 

  • Hasan A, Hafiz HR, Siddiqui N, Khatun M, Islam R, Al–Mamun A. 2015. Evaluation of wheat genotypes for salt tolerance based on some physiological traits. J. Crop Sci. Plant Breed. 18: 333–340

    Google Scholar 

  • Helmke PA, Sparks DL. 1996. Lithium, sodium, potassium, rubidium, and cesium. p. 551–574. In D. L. Sparks et al. (ed.) Methods of Soil Analysis. Part III. 3rd Ed. Am. Soc. Agron., Madison, WI

    Google Scholar 

  • Huang Sh, Spielmeyer W, Lagudah S, James RA, Platten JD, Dennis ES, Munns R. 2006. A sodium transporter (HKT7) is a candidate for NAX1, a gene for salt tolerance in durum wheat. Plant Physiol. 142: 1718–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain SS, Kayani MA, Amjad M. 2011. Transcription factors as tools to engineer enhanced drought tolerance in plants. Americ. Ins. Chem. Engin. 27: 297–306

    CAS  Google Scholar 

  • Imran QM, Kamran M, Ur Rehman S, Ghafoor A, Falak N, Kim K, Lee I, Yun BW, Jami M. 2016. GA Mediated OsZAT–12 Expression Improves Salt Resistance of Rice. Int. J. Agric. Biol. 18: 1814–9596

    Google Scholar 

  • James RA, Rivelli AR, Munns R, von Caemmerer S. 2002. Factors affecting CO2 assimilation, leaf injury and growth in salt–stressed durum wheat. Func. Plant Biol. 29: 1393–1403

    Article  CAS  Google Scholar 

  • James RA, Davenport RJ, Munns R. 2006. Physiological characterization of two genes for Na+ exclusion in durum wheat: NAX1 and NAX2. Plant Physiol. 142: 1537–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson RA, Wichern DW. 1982. Applied Multivariate Statistical Analysis. Prentice Hall. New Jersey 07458. 794

    Google Scholar 

  • Kobayashi F, Ishibashi M, Takumi S. 2008. Transcriptional activation of COR/LEA genes and increase in abiotic stress tolerance through expression of a wheat DREB2 homolog in transgenic tobacco. Transgenic Res. 17: 755–767

    Article  CAS  PubMed  Google Scholar 

  • Koebner RMD, Martin PK. 1996. High levels of salt tolerance revealed in triticale. Triticale: Today Tomorrow. Kluwer Academic Publishers. 429–436

    Book  Google Scholar 

  • Kuleung C, Baenziger PS, Dweikat I. 2004. Transferability of SSR markers among wheat, rye, and triticale. Theor. Appl. Genet. 108: 1147–1150

    Article  CAS  PubMed  Google Scholar 

  • Larter EN. 2009. Triticale. The Canadian Encyclopedia.

    Google Scholar 

  • Lata C, Prasad M. 2011. Role of DREBs in regulation of abiotic stress responses in plants. J. Exp. Botany 62: 4731–4748

    CAS  Google Scholar 

  • Luo MC, Dubcovsky J, Goyal S, Dvorak J. 1996. Engineering of interstitial foreign chromosome segments containing the K+/Na+ selectivity gene Knal by sequential homoeologous recombination in durum wheat. Theor. Appl. Genet. 92: 1180–1184

    Article  Google Scholar 

  • Medina J, Catala R, Salinas J. 2011. The CBFs: three Arabidopsis transcription factors to cold acclimate. Plant Sci. 180: 3–11

    Article  CAS  PubMed  Google Scholar 

  • Mondini L, Nachit MM, Porceddu E, Pagnotta M. 2011. HRM technology for the identification and characterization of INDEL and SNP mutations in genes involved in drought and salt tolerance of durum wheat. Plant Genet. Res.: Charact. Utiliz. 9: 166–169

    Article  CAS  Google Scholar 

  • Mondini L, Nachit MM, Pagnotta M. 2014. Allelic variants in durum wheat (Triticum turgidum L. var. durum) DREB genes conferring tolerance to abiotic stresses. Mol. Genet. Genomics 290(2): 531–44. doi: 10.1007/s00438–014–0933–2

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi–Shinozaki K. 2009. Transcriptional regulatory networks in response to abiotic stresses in arabidopsis and grasses. Plant Physiol. 149: 88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak SN, Balaji J, Upadhyaya HD, Hash CT, Kishor PBK, Chattopadhyay D, Rodriquez LM., Blair MW, Baum M, McNally K, This D, Hoisington DA, Varshney RK. 2009. Isolation and sequence analysis of DREB2A homologues in three cereal and two legume species. Plant Sci. 177: 460–467

    Article  CAS  Google Scholar 

  • Nelson JC, Sorrells ME, Van–Deynze A.E, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA. 1995. Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141: 721–731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey B, Sharma P, Saini M, Pandey DM, Sharma I. 2014. Isolation and characterization of dehydration–responsive element–binding factor 2 (DREB2) from Indian wheat (Triticum aestivum L.) cultivars. Aust. J. Crop Sci. 8: 44–54

    Google Scholar 

  • Richards LA. (1954). Diagnosis and improvement of saline and alkaline soils. U. S. Salinity Laboratory Staff. USDA. Hand book No. 60. Washington, D C. 160 pp

    Google Scholar 

  • Rohlf FJ. 2001. Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55: 2143–2160

    Article  CAS  PubMed  Google Scholar 

  • Röder MS, Plaschke J, Konig SU, Borner A, Sorrells ME, Tanksley SD, Ganal MW 1995. Abundance, variability and chromosomal location of microsatellites in wheat. Mol. Gen. Genet. 246: 327–333

    Article  PubMed  Google Scholar 

  • Rosielle AA, Hamblin I. 1981. Theoretical aspects of selection for yield in stress and non–stress environments. Crop Sci. 21: 43–46

    Article  Google Scholar 

  • Saghai–Maroof MA, Soliman KM, Jorgensen RA, Allard R W. 1984. Ribosomal DNA spacer–length polymorphism in barely: mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences of the United States of American. 81: 8014–8018

    Article  Google Scholar 

  • Shalaby EE, Epstein E, Qualset CO. 1993. Variation in salt tolerance among some wheat and triticale genotypes. J. Agron. Crop Sci. 171: 298–304

    Article  Google Scholar 

  • Shi Y, Gao L, Wu Z, Zhang X, Wang M, Zhang C, Zhang F, Zhou Y, Li Z. 2017. Genome–wide association study of salt tolerance at the seed germination stage in rice. BMC Plant Biol. 17: 92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swindell WR. 2006. The association among gene expression responses to nine abiotic stress treatments in Arabidopsis thaliana. Genetics. 174: 1811–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahmasebi S, Heidari B, Pakniyat H, Jalal Kamali M. 2014. Independent and combined effects of heat and drought stress in the SeriM82/Babax bread wheat population. Plant Breed. 133: 702–711

    Article  Google Scholar 

  • Tahmasebi S, Heidari B, Pakniyat H, Dadkhodaie A. 2015. Consequences of 1BL/1RS translocation on agronomic and physiological traits in wheat. Cereal Res. Commun. 43: 554–566

    Article  CAS  Google Scholar 

  • Tilley M. 2004. PCR amplification of wheat sequences from DNA extracted during milling and baking. Cereal Chem. 81: 44–47

    Article  CAS  Google Scholar 

  • Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner JS, Stockinger EJ, Stanca AM, Pecchioni N. 2006. Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor. Appl. Genet. 112: 445–454

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M. 2009. RNA–Seq: a revolutionary tool for transcriptomics. Nature Rev. Genet. 10: 57–63

    Article  CAS  PubMed  Google Scholar 

  • Watanabe FS, Olsen SR. 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. Proc. 29: 677–678

    Article  CAS  Google Scholar 

  • Wei B, Jing R, Wang C, Chen, J, Mao X, Chang X, Jia J. 2009. DREB1 genes in wheat (Triticum aestivum L.): Development of functional markers and gene mapping based on SNPs. Mol. Breed. 23: 13–22

    Article  CAS  Google Scholar 

  • Xu ZS, Ni ZY, Liu L, Nie LN, Li LC, Chen M, Ma YZ. 2008b. Characterization of the TaAIDFa gene encoding a CRT/DRE–binding factor responsive to drought, high–salt, and cold stress in wheat. Mol. Genet. Genomics 280: 497–508

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi–Shinozaki K, Shinozaki K. 1993. Characterization of the expression of a desiccation–responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol. General Genet. 236: 331–340

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Heidari.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feuj, R., Heidari, B. & Dadkhodaie, A. Association of DREB Genes and Microsatellite Markers Linked to NAX2 with Salt Tolerance in CIMMYT-derived Triticale, Wheat and Rye Genotypes. J. Crop Sci. Biotechnol. 21, 309–319 (2018). https://doi.org/10.1007/s12892-017-0024-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-017-0024-0

Key words