Skip to main content

Advertisement

Log in

Genetic transformation of pigeonpea (Cajanus cajan L.) and screening transgenic progenies based on lateral root inhibition

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Production of transgenic pigeonpea is becoming increasingly important, but the methods currently employed in production and subsequent screening still requires improvement. Here, we describe Agrobacterium-mediated genetic transformation of pigeonpea with reporter uidA (gus) gene and selectable marker, neomycin phospho-transferase (nptII) gene. Histochemical assay demonstrate localization of gus activity in cells and transformed plants. Overall, a transformation frequency of 0.33% was achieved using the protocol. Grafting of in vitro-regenerated healthy shoots indicates higher survival percent (72.6%), when stock and scion are of the same variety. Seeds harvested from primary transgenic plants can be screened based on lateral root inhibition strategy. Approximately 87% of the screened T1 plants were found to be PCR positive. In conclusion, in vitro grafting of transgenic pigeonpea shoots leads to better plant establishment and screening based on lateral root inhibition leads to quick identification of positive segregants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Das A, Parida SK. 2014. Advances in biotechnological applications in three important food legumes. Plant Biotechnol. Rep. 8: 83–99

    Article  Google Scholar 

  • Dayal S, Lavanya M, Devi P, Sharma KK. 2003. An efficient protocol for shoot generation and genetic transformation of pigeonpea (Cajanus cajan (L.) Millsp.) using leaf explants. Plant Cell Rep. 21: 1072–1079

    Article  CAS  PubMed  Google Scholar 

  • De Block M, Herrera-Estrella L, Van Montagu M, Schell J, Zambryski. 1984. Expression of foreign genes in regenerated plants and their progeny. EMBO J. 3: 1681–1689

    PubMed  PubMed Central  Google Scholar 

  • Eapen S, George L. 1993. Plant regeneration from leaf discs of peanut and pigeonpea: Influence of benzyladenine, indole acetic acid and indole acetic acid-amino acid conjugates. Plant Cell Tiss. Organ Cult. 35: 223–227

    Article  CAS  Google Scholar 

  • Eapen S, Tivarekar S, George L. 1998. Thidiazuron-induced shoot regeneration in pigeonpea (Cajanus cajan L.). Plant Cell Tiss. Organ Cult. 53: 217–220

    Article  CAS  Google Scholar 

  • FAOSTAT. 2014. Food and Agricultural Organization (http://faostat3.-fao.org/)

    Google Scholar 

  • Franklin G, Jeyachandran R, Melchias G, Ignacimuthu S. 1998. Multiple shoot induction and regeneration of pigeonpea (Cajanus cajan (L.) Millsp.) cv. Vamban 1 from apical and axillary meristem. Curr. Sci. 74: 936–937

    Google Scholar 

  • Geetha N, Venkatachalam P, Lakshmi Sita G. 1999. Agrobacterium mediated genetic transformation of pigeonpea (Cajanus cajan [L.]) and development of transgenic plants via direct organogenesis. Plant Biotecnol. 16: 213–218

    Article  CAS  Google Scholar 

  • Geetha N, Venkatachalam P, Prakash V, Lakshmi Sita G. 1998. High frequency induction of multiple shoots and plant regeneration from seedling explants of pigeonpea (Cajanus cajan (L.). Curr. Sci. 75: 1036–1041

    CAS  Google Scholar 

  • George L, Eapen SL. 1994. Organogenesis and embryogenesis from diverse explants in pigeonpea (Cajanus cajan [L.]). Plant Cell Rep. 13: 417–420

    Article  CAS  PubMed  Google Scholar 

  • Ghosh G, Purohit A, Ganguly S, Chaudhuri RK, Chakraborti D. 2014. In vitro shoot grafting on rootstock: An effective tool for Agrobacterium-mediated transformation of pigeonpea (Cajanus cajan (L.) Millsp.). Plant Biotechnol. 31(4) DOI: 10.5511

    Google Scholar 

  • Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. Circular & California Agricultural Experiment Station. 347: 32

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW. 1987. GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6(13): 3901–3907.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krishna G, Reddy PS, Ramteke PW, Bhattacharya PS. 2010. Progress of tissue culture and genetic transformation research in pigeonpea [(Cajanus cajan (L.) Millsp.] Plant Cell Rep. 29(10): 1079–95

    Article  CAS  PubMed  Google Scholar 

  • Krishna G, Reddy PS, Ramteke PW, Rambabu P, Tawar KB, Bhattacharya PS. 2011. Agrobacterium-mediated genetic transformation of pigeon pea [Cajanus cajan (L.) Millsp.] for resistance to legume pod borer Helicoverpa armigera. J. Crop Sci. Biotechnol. 14: 197–204

    Article  Google Scholar 

  • Kumar SM, Kumar BK, Sharma KK, Devi P. 2004. Genetic transformation of pigeonpea with rice chitinase gene. Plant Breed. 123(5): 485–489

    Article  CAS  Google Scholar 

  • Kumari PV, Kishor PBK, Bhalla JK. 2001. In vitro plant regeneration in pigeonpea [Cajanus cajan L.] via organogenesis. Plant Cell Biotech. Mol. Biol. 2(1 and 2): 49–56

    Google Scholar 

  • Lawrence PK, Koundal KR. 2001. Agrobacterium tumefaciensmediated transformation of pigeonpea (Cajanus cajan (L.) Millisp) and molecular analysis of regenerated plants. Curr Sci. 80: 1428–1432

    CAS  Google Scholar 

  • Mohan ML, Krishnamurthy KV. 1998. Plant regeneration in pigeonpea (Cajanus cajan (L.) Millsp.) by organogenesis. Plant Cell Rep. 17: 705–710

    Article  CAS  Google Scholar 

  • Mohan ML, Krishnamurthy KV. 2003. Plant regeneration from decapitated mature embryonic axis and Agrobacterium mediated genetic transformation of pigeonpea. Biol. Plant. 49: 519–527

    Article  Google Scholar 

  • Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15: 473–497

    Article  CAS  Google Scholar 

  • Nene Y, Sheila VK. 1990. Pigeonpea: Geography and Importance. In YL Nene, SD Hall, VK Sheila, eds. The Pigeonpea. Wallingford, UK, CAB International, pp 1–14

    Google Scholar 

  • Prasad V, Satyavathi VV, Sanjaya, Valli KM, Khandelwal A, Shaila MS, Sita GL. 2004. Expression of biologically active Hemagglutinin-neuraminidase protein of Pestes des petits ruminants virus in transgenic pigeonpea [Cajanus cajan (L.) Millsp.]. Plant Sci. 166(1): 199–205

    Article  CAS  Google Scholar 

  • Ramu SV, Rohini S, Keshavareddy G, Gowri NM,, Shanmugam NB, Kumar ARV, Sarangi SK, Kumar PA, Udaykumar M. 2012. Expression of a synthetic cry 1AcF gene in transgenic pigeonpeaconfers resistance to Helicoverpa armigera. J. Appl. Entomol. 136(9): 675–687

    Article  CAS  Google Scholar 

  • Sankara Rao K, Sreevathsa R, Sharma PD, Keshamma E, Uday KM. 2008. In planta transformation of pigeon pea: a method to overcome recalcitrancy of the crop to regeneration in vitro. Physiol. Mol. Biol. Plant. 14: 321–328

    Article  CAS  Google Scholar 

  • Satina S, Blakeslee AF, Avery AG. 1940. Demonstration of three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Amer. J. Bot. 27: 895–905

    Article  Google Scholar 

  • Satyavathi VV, Prasad V, Khandelwal A, Shaila MS, Sita GL. 2003. Expression of hemagglutinin protein of Rinderpest virus in transgenic pigeonpea [Cajanus cajan (L.) Millsp.] plants. Plant Cell Rep. 21: 651–658

    CAS  PubMed  Google Scholar 

  • Sawardekar SV, Mhatre NK, Sawant SS, Bhave SG, Gokhale NB, Narangalkar AL, Katageri IS, Kumar PA. 2012. Agrobacterium-mediated genetic transformation of pigeonpea [Cajanus cajan (L.) Millisp] for pod borer resistance: Optimization of protocol. Indian J. Genet. Plant Breed. 72(3): 380–383

    Google Scholar 

  • Saxena KB. 2008. Genetic improvement of pigeonpea-a review. Trop Plant Biol. 1: 159–178

    Article  Google Scholar 

  • Sharma KK, Lavanya K, Anjalah A. 2006. Agrobacterium tumefaciens-mediated production of transgenic pigeon pea (Cajanus cajan (L.) Millsp.) expressing the synthetic BT CRY1AB Gene. In vitro Cell Dev. Biol. 42: 165–173

    Article  CAS  Google Scholar 

  • Shivaprakash, Pental D, Sarin NB. 1994. Regeneration of pigeonpea (Cajanus cajan L.) from cotyledonary node via multiple shoot formation. Plant Cell Rep. 13: 623–627

    CAS  Google Scholar 

  • Singh ND, Sahoo L, Saini NB, Jaiwal PK. 2004. In vitro regeneration and recovery of primary transformants from shoot apices of pigeonpea using Agrobacterium tumefaciens. Physiol. Mol.Biol. Plants. 10: 65–74

    CAS  Google Scholar 

  • Singh ND, Sahoo L, Sonia, Jaiwal PK. 2002. In vitro shoot organogenesis and plant regeneration from cotyledonary node and leaf explants of pigeonpea (Cajanus cajan L.). Physiol. Mol. Biol. Plants 8(133): 133–140

    Google Scholar 

  • Singh NP, Datta S, Rohatgi D, Chauhan R. 2007. In vitro plant regeneration via. direct organogenesis in pigeonpea (Cajanus cajan L.). Plant Cell Biotech. Mol. Bio. 8(3 and 4): 153–158

    Google Scholar 

  • Surekha C, Arundhati A, Rao GS. 2007. Differential response of Cajanus cajan varieties to transformation with different strains of Agrobacterium. J. Biol. Sci. 7: 176–181

    Article  CAS  Google Scholar 

  • Surekha CH, Beena MR, Arundhati A, Singh PK, Tuli R, Dutta Gupta A, Kirti PB. 2005. Agrobacterium-mediated genetic transformation of pigeonpea (Cajanus cajan (L.) Millsp.) using embyronal segments and development of transgenic plants for resistance against Spodoptera. Plant Sci. 169(6): 1074–1080

    Article  CAS  Google Scholar 

  • Thu TT, Mai TTX, Dewaele E, Farsi S, Tadesse Y, Angenon G, Jacobs M. 2003. In vitro regeneration and transformation of pigeonpea (Cajanus cajan (L.) Millsp.). Mol Breed. 11: 159–168

    Article  CAS  Google Scholar 

  • Varshney RK, Hoisington DA, Upadhyaya HD, Gaur PM, Nigam SN, Saxena K, Vadez V, Sethy NK, Bhatia S, Aruna R, Gowda MVC, Singh NK. 2007. Molecular genetics and breeding of grain legume crops for the semi-arid tropics. In RK Varshney, R Tuberosa, Eds. Genomics-assisted crop improvement, Vol II: Genomics applications in crops. Dordrecht: Springer, pp. 207–242

    Chapter  Google Scholar 

  • Varshney RK, Penmetsa RV, Dutta S, Kulwal PL, Saxena RK, et al. 2010. Pigeonpea genomics initiative (PGI): an international effort to improve crop productivity of pigeonpea (Cajanus cajan L.). Mol. Breed. 26(3): 393–408

    Article  PubMed  Google Scholar 

  • Verma AK, Chand L. 2005. Agrobacterium-mediated transformation of pigeonpea (Cajanus cajan L.) with uidA and CryIA(b) genes. Physiol. Mol. Biol. Plant. 11: 99–109

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Pratap Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Kumar, M., Singh, A.K. et al. Genetic transformation of pigeonpea (Cajanus cajan L.) and screening transgenic progenies based on lateral root inhibition. J. Crop Sci. Biotechnol. 19, 295–302 (2016). https://doi.org/10.1007/s12892-016-0045-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-016-0045-0

Key words

Profiles

  1. Subhojit Datta