Skip to main content
Log in

Genotypic variation in abscisic acid content, carbon isotope ratio and their relationship with cassava growth and yield under moisture stress and irrigation

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study was carried out to assess genotypic variability in abscisic acid content, carbon isotope ratio, and their relationship to storage root yield and yield components in cassava under irrigation and moisture stress. The study involved 20 cassava genotypes arranged in randomized complete block design with three replications. Irrigation water was applied using a drip irrigation system with a discharge rate of approximately 5.33 L m-2 hr-1. Significant (P < 0.05) genotypic variability was observed for all physiological, growth, and yield traits assessed. Abscisic acid content was higher under stress than irrigation and negatively correlated with root yield (r = -0.45), harvest index (r = -0.43), and above-ground biomass yield (r = -0.20) indicating that it can be used as indirect selection criteria against unproductive genotypes. Carbon isotope ratio was significantly and positively correlated with above-ground biomass yield (r = 0.20) but not root yield (r = 0.09). Estimates of genotypic variability indicated high values for most of the growth and yield components but low heritability values for abscisic acid content, carbon isotope ratio, stomatal conductance, and root yield under stress conditions. However, higher estimates were recorded under irrigation and in the combined analysis. It was also found from this study that carbon isotope ratio influences above-ground biomass but not storage root yield under stress conditions. The results from this study provide useful information on the relationship between abscisic acid content, carbon isotope discrimination, and storage root yield in field-grown cassava.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adjebeng-Danquah J, Gracen V, Offei, SK, Asante IK, Manu-Aduening J. 2016. Agronomic performance and genotypic diversity for morphological traits cassava genotypes in the guinea savannah ecology of Ghana. J. Crop Sci. Biotechnol. 19(1): 99–108

    Article  Google Scholar 

  • Aina OO, Dixon AGO, Akinrinde EA. 2007. Effect of soil moisture stress on growth and yield of cassava in Nigeria. Pak. J. Biol. Sci. 10(18): 3085–3090

    Article  CAS  PubMed  Google Scholar 

  • Aina OO, Dixon AGO, Illona P, Akinrinde EA. 2009. GxE interaction effects on yield and yield components of cassava (landraces and improved) genotypes in the savannah regions of Nigeria. Afr. J. Biotechnol. 8(19): 4933–4945

    Google Scholar 

  • Akinwale MG, Akinyele BO, Dixon AGO, Odiyi AC. 2010. Genetic variability among forty-three cassava genotypes in three agro-ecological zones of Nigeria. J. Plant Breed. Crop Sci. 2(5): 104–109

    Google Scholar 

  • Alves AAC, Setter TL. 2004a. Abscisic acid accumulation and osmotic adjustment in cassava under water deficit. Environ. Exp. Bot. 51: 259–271

    Article  CAS  Google Scholar 

  • Alves AAC, Setter TL. 2004b. Response of cassava leaf area expansion to water deficit: Cell proliferation, cell expansion and delayed development. Ann. Bot. 94: 605–613

    Article  PubMed  PubMed Central  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C. 2002. Plant breeding and drought in C3 cereals: what should we breed for? Ann. Bot. 89: 925–940

    Article  PubMed  PubMed Central  Google Scholar 

  • Arunyanark A, Jogloy S, Akkasaeng C, Vorasoot N, Kesmala T, Nageswara-Rao RC, Wright GC, Patanothai A. 2008. Chlorophyll stability is an indicator of drought tolerance in peanut. J. Agron. Crop Sci. 194: 113–125

    Article  CAS  Google Scholar 

  • Aspiazu I, Sediyama T, Ribeiro Jr JI, Silva AA, Concenco G, Ferreira EA, Galon L, Silva AF, Borges ET, Araujo WF. 2010. Photosynthetic activity of cassava plants under weed competition. Planta daninha (online), 28: 963–968

    Article  Google Scholar 

  • Blum A. 2005. Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant, or mutually exclusive? Aust. J. Agri. Res. 56: 1159–1168

    Article  Google Scholar 

  • Blum A. 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop Res. 112: 119–123

    Article  Google Scholar 

  • Blum A. 2011. Plant Water Relations, Plant Stress and Plant Production. Breeding plants for water limited environments, 258 pp

    Chapter  Google Scholar 

  • Byju G, Haripriya-Anand M. 2009. Leaf colour chart and chlorophyll-meter-based leaf nitrogen estimation and their threshold values for real-time nitrogen management in cassava. Commun. Soil Sci. Plant Anal, 40(17–18): 2816–2832

    Article  CAS  Google Scholar 

  • Ceballos H, Iglesias CA, Pérez JC, Dixon AGO. 2004. Cassava breeding: opportunities and challenges. Plant Mol. Biol. 56: 503–516

    Article  CAS  PubMed  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD. 2004. Breeding for high water-use efficiency. J. Exp. Bot. 55(407): 2447–2460

    Article  CAS  PubMed  Google Scholar 

  • Delgado MI, Reynolds MP, Larque-Saavedra A, Nava TS. 1994. Genetic diversity for photosynthesis in wheat under heat stressed environment and its relationship to productivity. Wheat Programme Special Report 30, Mexico, CIMMYT

    Google Scholar 

  • Duque LO, Setter TL. 2013. Cassava response to water deficit in deep pots: root and shoot growth, ABA, and carbohydrate reserves in stems, leaves and storage roots. Trop. Plant Biol. 6: 199–209

    Article  CAS  Google Scholar 

  • Edmeades GO, Bolanos J, Elings A, Ribaut J-M, Banziger M, Westgate ME. 2000. The role and regulation of the anthesissilking interval in maize. In: ME Westgate, KJ Boote, Eds, Physiology and Modelling Kernel Set in Maize. CSSA Special Publication No. 29. CSSA, Madison, WI, pp 43–73

    Google Scholar 

  • El-Sharkawy MA. 2004. Cassava biology and physiology. Plant Mol. Biol. 56: 481–501

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy MA. 2007. Physiological characteristics of cassava tolerance to prolonged drought in the tropics: Implications for breeding cultivars adapted to seasonally dry and semiarid environments. Braz. J. Plant Physiol. 19(4): 257–286

    Article  CAS  Google Scholar 

  • El-Sharkawy MA, De Tafur SM. 2007. Genotypic and within canopy variation in leaf carbon isotope discrimination and its relation to short-term leaf gas exchange characteristics in cassava grown under rain-fed conditions in the tropics. Photosynthetica 45(4): 515–526

    Article  Google Scholar 

  • EPA. 2003. National Action Programme to Combat Drought and Desertification Final Report. Environmental Protection Agency Accra-Ghana, 160 pp

    Google Scholar 

  • Haripriya-Anand M, Byju G. 2008. Chlorophyll meter and leaf colour chart to estimate chlorophyll content, leaf colour and yield of cassava. Photosynthetica 46(4): 511–516

    Article  CAS  Google Scholar 

  • Karimizadeh R, Mohammadi M, Ghaffaripour S, Karimpour F, Shefazadeh MK. 2011. Evaluation of physiological screening techniques for drought-resistant breeding of durum wheat genotypes in Iran. Afr. J. Biotechnol. 10(56): 12107–12117

    Google Scholar 

  • Lenis JI, Calle F, Jaramillo G, Perez JC, Ceballos H, Cock JH. 2006. Leaf retention and cassava productivity. Field Crops Res. 95: 126–134

    Article  Google Scholar 

  • Monneveux P, Ramírez DA, Pino MT. 2013. Drought tolerance in potato (S. tuberosum L.) Can we learn from drought tolerance research in cereals? Plant Sci. 205–206: 76–86

    Article  PubMed  Google Scholar 

  • Ntawuruhunga P, Dixon AGO. 2010. Quantitative variation and interrelationship between factors influencing cassava yield. J. Appl. Biosci. 26: 1594–1602

    Google Scholar 

  • Okogbenin E, Ekanayake IJ, Porto MCM (2003). Genotypic variability in adaptation responses of selected cassava clones to drought stress in the Sudan Savannah Zone of Nigeria. J. Agron. Crop Sci. 189: 376–389

    Article  Google Scholar 

  • Okogbenin E, Setter TL, Ferguson ME, Mutegi R, Ceballos H, Olasanmi B, Fregene M. 2013. Phenotypic approaches to drought in cassava: Review. In: P Monneveux, J-M Ribaut, Eds, Front. Physiol. 4(93): 1–15

    Google Scholar 

  • Paknejad F, Nasri M, Reza H, Moghadam T, Zahedi H, Alahmadi MJ. 2007. Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars. J. Biol. Sci. 7: 841–847

    Article  CAS  Google Scholar 

  • Payne RW, Murray DA, Harding SA, Baird DB, Soutar DM 2009. Genstat for Windows (12th Ed.) Introduction. VSN International, Hemel Hempstead

    Google Scholar 

  • Prashar A, Yildiz J, McNicol JW, Bryan GJ, Jones HG. 2013. Infra-red thermography for high throughput field phenotyping in Solanum tuberosum, PLoSONE 8(6): e65816. doi:10.1371/journal.pone.0065816

    Article  CAS  Google Scholar 

  • Rebetzke GJ, Condon AG, Richards RA, Farquhar GD. 2002. Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Sci. 42: 739–745

    Article  Google Scholar 

  • Sanchez FJ, Manzanares M, de Andres EF, Tenorio JL, Ayerbe L. 2001. Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions. Influence on harvest index and canopy temperature. Eur. J. Agron. 15: 57–70

    Article  Google Scholar 

  • Setter TL, Flannigan BA, Melkonian J. 2001. Loss of kernel set due to water deficit and shade in maize. Crop Sci. 41: 1530–1540

    Article  CAS  Google Scholar 

  • Setter TL, Parra R. 2010. Relationship of carbohydrate and abscisic acid levels to kernel set in maize under post pollination water deficit. Crop Sci. 50: 980–988

    Article  CAS  Google Scholar 

  • Sharp RE, LeNoble ME. 2001. ABA, ethylene and the control of shoot and root growth under water stress. J. Exp. Bot. 53: 33–37

    Article  Google Scholar 

  • This D, Borries C, Souyris I, Teulat B. 2000. QTL study of chlorophyll content as a genetic parameter of drought tolerance in barley. Barley Genet. Newsl. 30: 20–23

    Google Scholar 

  • Turyagyenda FL, Kizito EB, Baguma Y, Osiru D. 2013. Evaluation of Ugandan cassava germplasm for drought tolerance. Intl. J. Agri. Crop Sci. 5(3): 212–226

    Google Scholar 

  • van der Mescht A, de Ronde JA, Rossouw FT. 1999. Chlorophyll fluorescence and chlorophyll content as a measure of drought tolerance in potato. S. Afr. J. Sci. 95: 407–412

    Google Scholar 

  • Wolie A, Dessalegn T, Belete K. 2013. Heritability, variance components and genetic advance of some yield and yield related traits in Ethiopian collections of finger millet (Eleusine coracana (L.) Gaertn.) genotypes. Afr. J. Biotechnol. 12(36): 5529–5534

    Google Scholar 

  • Zhang JH, Davies WJ. 1990. Changes in the concentration of ABA in xylem sap as a function of changing soil-water status can account for changes in leaf conductance and growth. Plant Cell Environ. 13(3): 277–285

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Adjebeng-Danquah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adjebeng-Danquah, J., Manu-Aduening, J., Gracen, V.E. et al. Genotypic variation in abscisic acid content, carbon isotope ratio and their relationship with cassava growth and yield under moisture stress and irrigation. J. Crop Sci. Biotechnol. 19, 263–273 (2016). https://doi.org/10.1007/s12892-016-0004-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-016-0004-9

Key words

Navigation