Rapid discrimination of F1 hybrid seeds from their parental lines and selection of protein-rich corn lines for silage corn breeding using FT-IR spectroscopy combined by multivariate analysis

An Erratum to this article was published on 01 December 2015

Abstract

This study aims to establish the discrimination of F1 hybrid seeds from their parental lines and rapid selection of proteinrich lines from inbreeding lines of corn using FT-IR spectroscopy combined by multivariate analysis. Eight individual seeds from the maternal and paternal lines of Gwangpyeongok and their F1 progeny seeds were subjected to FT-IR spectroscopy. A total of 176 corn inbreeding lines including commercial corn cultivars were subjected to FT-IR spectroscopy. To establish the prediction model for total protein content from corn seed, 33 corn inbreeding lines out of 176 were randomly selected and total seed protein contents using Bradford assay were examined. PLS-DA (partial least square regression discriminant analysis) could clearly discriminate F1 hybrid seeds from their parental lines. PC (principal component) loading values show that 1,700 – 1,500 cm−1 and 1,200 – 900 cm−1 regions of FT-IR spectra are significantly important for discrimination of corn lines. The prediction model for total protein contents was established by PLS (partial least square regression) algorithm, and its accuracy was confirmed by cross-validation test (R2 = 0.94). After external validation fromexternal 25 corn inbreeding lines, regression coefficient (R2) was 0.78 which indicated that the prediction model had relatively good accuracy. Thus, considering these results we suggest that FT-IR combined with multivariate analysis could be applied as a novel tool for high-throughput screening of F1 hybrid seeds from their parental lines and protein-rich lines for breeding of silage corn cultivar.

This is a preview of subscription content, access via your institution.

References

  1. Bryan GH, Larkins BA. 2005. Molecular genetic approaches to developing quality protein maize. Trends Genetics 21: 227–233

    Article  CAS  Google Scholar 

  2. Baye TM, Pearson TC, Settles AM. 2006. Development of a calibration to predict maize seed composition using single kernel near infrared spectroscopy. J. CerealSci. 43: 236–243

    Article  CAS  Google Scholar 

  3. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254

    PubMed  Article  CAS  Google Scholar 

  4. Chen L, Carpita NC, Reiter WD, Wilson RH, Jeffries C, McCann MC. 1998. A rapid method to screen for cell-wall mutants using discriminant analysis of fourier transformation infrared spectra. Plant J. 16: 385–392

    PubMed  Article  CAS  Google Scholar 

  5. D’Souza L, Devi P, Shridhar MPD, Naik CG. 2008. Use of Fourier Transform Infrared (FTIR) Spectroscopy to Study Cadmium-Induced Changes in Padina Tetrastromatica (Hauck). Anal. Chem. Insights 3: 135–143

    PubMed  PubMed Central  Google Scholar 

  6. Dumas P, Miller L. 2003. The use of synchrotron infrared microspectroscopy in biological and biomedical investigations. Vib. Spectrosc. 32: 3–21

    Article  CAS  Google Scholar 

  7. Goodacre R, Timmins EM, Burton R, Kaderbhai N, Woodward AM, Kell DB, Rooney PJ. 1998. Rapid identification of urinary tract infection bacteria using hyperspectral wholeorganism fingerprinting and artificial neural networks. Microbiology 144: 1157–1170

    PubMed  Article  CAS  Google Scholar 

  8. Hyun YH, Goo BS, Song JE, Kim DS. 2008. Food material. Hyungseunl Publishing Co. Daegu, Korea, pp 55–57

    Google Scholar 

  9. Kim SW, Ban SH, Chung H, Cho SH, Chung HJ, Choi PS, Yoo OJ, Liu JR. 2004. Taxonomic discrimination of higher plants by multivariate analysis of Fourier transform infrared spectroscopy data. Plant Cell Rep. 23: 246–250

    PubMed  Article  CAS  Google Scholar 

  10. Kim SW, Min SR, Kim JH, Park SK, Kim TI, Liu JR. 2009. Rapid discrimination of commercial strawberry cultivars using Fourier transform infrared spectroscopy data combined by multivariate analysis. Plant Biotech. Rep. 3: 87–93

    Article  Google Scholar 

  11. Kohavi R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI 2: 1137–1145

    Google Scholar 

  12. Kos G, Lohninger H, Krska R. 2003. Validation of chemometric models for determination of deoxynivalenolon maize by mid-infrared spectroscopy. Mycotoxin. Res. 19: 149–153

    PubMed  Article  Google Scholar 

  13. Krishnan P, Kruger NJ, Ratcliffe RG. 2005. Metabolite fingerprinting and profiling in plants using NMR. J. Exp. Bot. 56: 255–265

    PubMed  Article  CAS  Google Scholar 

  14. Lebot V, Malapa R. 2013. Application of near infrared reflectance spectroscopy for the evaluation of yam (Dioscoreaalata) germplasm and breeding lines. J. Sci. Food Agric. 93: 1788–1797

    PubMed  Article  CAS  Google Scholar 

  15. Leopold LF, Leopold N, Diehl HA, Socaciu C. 2011. Quantification of carbohydrates in fruit juices using FTIR spectroscopy and multivariate analysis. Spectroscopy 26: 93–104

    Article  CAS  Google Scholar 

  16. Liu Y, Ying Y, Yu H, Fu X. 2006. Comparison of the HPLC method and FT-NIR analysis for quantification of glucose, fructose, and sucrose in intact apple fruits. J. Agric. Food Chem. 54: 2810–2815

    PubMed  Article  CAS  Google Scholar 

  17. Lopez-Sanchez M, Ayora-Canada MJ, Molina-Diaz A. 2010. Olive fruit growth and ripening as seen by vibrational spectroscopy. J. Agric. Food Chem. 58: 82–87

    PubMed  Article  CAS  Google Scholar 

  18. Luca MD, Terouzi W, Kzaiber F, Ioele G, Oussama A, Ragno G. 2012. Classification of morocacan olive cultivars by linear discriminant analysis appleid to ATR-FT-IR spectra of endocarps. J. Food Sci. Technol. 47: 1286–1292

    Article  CAS  Google Scholar 

  19. Lutz W, Sanderson W, Scherbov S. 2001. The end of world population growth. Nature 412: 543–545

    PubMed  Article  CAS  Google Scholar 

  20. Marinovic S, Kristovic M, Spehar B, Rukavina V, Jukic A. 2012. Prediction of diesel fuel properties by vibrational spectroscopy using multivariate analysis. J. Anal. Chem. 67: 939–949

    Article  CAS  Google Scholar 

  21. Martens H, Naes T. 1989. Multivariate Calibration; John Wiley and Sons, Chichester. UK

    Google Scholar 

  22. Monferrere GL, Azcarate SM, Cantarelli MÁ, Funes IG, Camiña JM. 2012. Chemometric characterization of sunflower seeds. J. Food Sci. 77: 1018–1022

    Article  CAS  Google Scholar 

  23. Parker FS. 1983. Applications of infrared, raman and resonance raman spectroscopy in biochemistry. Plenum Press, New York, p. 527

    Google Scholar 

  24. Schulz H, Baranska M. 2007. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 43: 13–25

    Article  CAS  Google Scholar 

  25. Scibisz I, Reich M, Bureau S, Gouble B, CausseM, Bertrand D, Renard CMGC. 2011. Mid-infrared spectroscopy as a tool for rapid determination of internal quality parameters in tomato. Food Chem. 125: 1390–1397

    Article  CAS  Google Scholar 

  26. Shewry PR, Tatham AS, Fido RJ. 1995. Separation of plant proteins by electrophoresis. In: H Jones, ed, Methods in Molecular Biology-Plant Gene Transfer and Expression Protocols (v 49) Humana Press, Totowa, NJ. pp 423–437

    Google Scholar 

  27. Song SY, Jie EY, Ahn MS, Lee IH, Nou IS, Min BW, Kim SW. 2014. Fourier Transform Infrared (FT-IR) spectroscopy of genomic DNA to discriminate F1 progenies from their paternal lineage of Chinese cabbage (Brassica rapa subsp. pekinensis. Mol. Breed. 33: 453–464

    Article  CAS  Google Scholar 

  28. Stewart D, Yahiaoui N, McDougall GJ, Myton K, Marque C, Boudet AM, Haigh J. 1997. Fourier-transform infrared and Raman spectroscopic evidence for the incorporation of cinnamaldehydes into the lignin of transgenic tobacco (Nicotiana tabacum L.) plants with reduced expression of cinnamyl alcohol dehydrogenase. Planta 201: 311–318

    PubMed  Article  CAS  Google Scholar 

  29. Terhoeven-Urselmans T, Vagen TG, Spaargaren O, Shepherd KD. 2010. Prediction of soil fertility properties from a globally distributed soil mid-infrared spectral library. Soil Sci. Soc. Am. J. 74: 1792–1799

    Article  CAS  Google Scholar 

  30. Wenning M, Seiler H, Scherer S. 2002. Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts. Appl. Environ. Microbiol. 68: 4717–4721

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. Wolkers WF, OliverAE, Tablin F, Crowe JH. 2004. A Fourier transform infrared spectroscopy study of sugar glasses. Carb. Res. 339: 1077–1085

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Byung Whan Min.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nahm, S.H., Yang, S.G., Kim, S.W. et al. Rapid discrimination of F1 hybrid seeds from their parental lines and selection of protein-rich corn lines for silage corn breeding using FT-IR spectroscopy combined by multivariate analysis. J. Crop Sci. Biotechnol. 18, 161–169 (2015). https://doi.org/10.1007/s12892-015-0108-7

Download citation

Keywords

  • corn seed
  • Fourier transformation infrared spectroscopy (FT-IR)
  • principal component analysis (PCA)
  • partial least square (PLS) regression
  • total protein