Skip to main content

Expression of drought responsive genes in pigeonpea and in silico comparison with soybean cDNA library

Abstract

Pigeonpea, a drought tolerant, semi-arid pulse crop has been investigated for the expression of differentially expressed genes (DEGs) under drought stress. The cDNA library of soybean leaf tissue retrieved from the Unigene database of the NCBI, were compared for in silico expression using IDEG6 web statistical tool. A list of 52 non-redundant DEGs consisting of 11 up-regulated and 41 down-regulated was obtained. Among these, more photosynthesis and light harvesting proteins were down-regulated in drought stress conditions. Pathways were assigned based on KEGG database, revealing 32 genes involved in 17 metabolic pathways. Homologous sequences of six up-regulated genes namely, ADF3, APB, ASR, DLP, LTP1, and UGE5 were then used for quantitative reverse transcription PCR (qRT-PCR) in pigeonpea. The qRT-PCR result revealed the significant up-regulation of dehydrin-like protein (DLP) (5.02 log2 fold) and down-regulation of acid phosphatase class B family protein (APB) (9.43 log2 fold) and non-specific lipid transfer protein 1-like (LTP1) (18.81 log2 fold) in pigeonpea water-stressed leaf sample compared to well-watered leaf samples. No significant difference was observed in the stressed root compared to the stressed pigeonpea leaf sample except that APB showed an up-regulation of 11.35 log2 fold change.

This is a preview of subscription content, access via your institution.

References

  • Ali GM, Komatsu S. 2006. Proteomic analysis of rice leaf sheath during drought stress. J. Proteome Res. 5: 396–403

    Article  CAS  PubMed  Google Scholar 

  • Augustine RC, Pattavina KA, Tüzel E, Vidali L, Bezanilla M. 2011. Actin interacting protein1 and actin depolymerizing factor drive rapid actin dynamics in Physcomitrella patens. Plant Cell 23: 3696–3710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barber C, Rösti J, Rawat A, Findlay K, Roberts K, Seifert GJ. 2006. Distinct properties of the five UDP-D-glucose/UDP-D-galactose 4-epimerase isoforms of Arabidopsis thaliana. J. Biol. Chem. 281: 17276–17285

    Article  CAS  PubMed  Google Scholar 

  • Barozai MYK, Husnain T. 2011. Identification of biotic and abiotic stress up-regulated ESTs in Gossypium arboretum. Mol. Biol. Rep. 39: 1011–1018

    Article  PubMed  Google Scholar 

  • Barrs HD, Weatherley PE. 1962. A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust. J. Biol. Sci. 15: 413–428

    Google Scholar 

  • Carrari F, Fernie AR, Iusem ND. 2004. Heard it through the grapevine? ABA and sugar cross-talk: the ASR story. Trends Plant Sci. 9: 57–59

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Ren F, Zhong H, Feng Y, Jiang W, Li X. 2010. Identification and expression analysis of genes in response to high-salinity and drought stresses in Brassica napus. Acta Biochim. Biophys. Sin. 42: 154–164

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT. 2011. Food and Agriculture Organization of the United Nations. Available at http://faostat.fao.org/

    Google Scholar 

  • Fuller VL, Lilley CJ, Atkinson HJ, Urwin PE. 2007. Differential gene expression in Arabidopsis following infection by plant-parasitic nematodes Meloidogyne incognita and Heterodera schachtii. Mol. Plant Pathol. 8: 595–609

    Article  CAS  PubMed  Google Scholar 

  • Gachon C, Mingam A, Charrier B. 2004. Real-time PCR: what relevance to plant studies? J. Exp. Bot. 55: 1445–1454

    Article  CAS  PubMed  Google Scholar 

  • George S, Venkataraman G, Parida A. 2007. Identification of stress-induced genes from the drought-tolerant plant Prosopis juliflora (Swartz) DC. through analysis of expressed sequence tags. Genome 50: 470–478

    Article  CAS  PubMed  Google Scholar 

  • Gong P, Zhang J, Li H, Yang C, Zhang C, Zhang X, Khurram Z, Zhang Y, Wang T, Fei Z, Ye Z. 2010. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways into tomato. J. Exp. Bot. 61: 3563–3575

    Article  CAS  PubMed  Google Scholar 

  • Ingram J, Bartels D. 1996. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 377–403

    Article  CAS  PubMed  Google Scholar 

  • Jung HW, Kim KD, Hwang BK. 2005. Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses. Planta 221: 361–373

    Article  CAS  PubMed  Google Scholar 

  • Keller F, Ludlow MM. 1993. Carbohydrate metabolism in drought-stressed leaves of pigeonpea (Cajanus cajan). J. Exp. Bot. 44: 1351–1359

    Article  CAS  Google Scholar 

  • Lata C, Sahu PP, Prasad M. 2010. Comparative transcriptome analysis of differentially expressed genes in foxtail millet (Setaria italica L.) during dehydration stress. Biochem. Biophys. Res. Commun. 393: 720–727

    Article  CAS  PubMed  Google Scholar 

  • Liang D, Xia H, Wu S, Ma F. 2012. Genome-wide identification and expression profiling of dehydrin gene family in Malus domestica. Mol. Biol. Rep. 39: 10759–10768

    Article  CAS  PubMed  Google Scholar 

  • Lindorff LK, Winther JR. 2001. Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases. FEBS Lett. 488: 145–148

    Article  Google Scholar 

  • Liu HY, Dai JR, Feng DR, Liu B, Wang HB, Wang JF. 2010. Characterization of a novel plantain Asr gene, MpAsr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses. J. Integr. Plant Biol. 52: 315–323

    Article  CAS  PubMed  Google Scholar 

  • Ma XF, Tudor S, Butler T, Ge Y, Xi Y, Bouton J, Harrison M, Wang ZY. 2012. Transgenic expression of phytase and acid phosphatase genes in alfalfa (Medicago sativa) leads to improved phosphate uptake in natural soils. Mol. Breed. 30: 377–391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K. 2009. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 149: 88–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. 1999. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27: 29–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Priyanka B, Sekhar K, Sunitha T, Reddy VD, Rao KV. 2010. Characterization of expressed sequence tags (ESTs) of pigeonpea (Cajanus cajan L.) and functional validation of selected genes for abiotic stress tolerance in Arabidopsis thaliana. Mol. Genet. Genomics 283: 273–287

    Article  CAS  PubMed  Google Scholar 

  • Puhakainen T, Hess MW, Makela P, Svensson J, Heino P, Palva ET. 2004. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol. Biol. 54: 743–753

    Article  CAS  PubMed  Google Scholar 

  • Raju NL, Gnanesh BN, Lekha P, Jayashree B, Pande S, Hiremath PJ, Byregowda M, Singh NK, Varshney RK. 2010. The first set of EST resource for gene discovery and marker development in pigeonpea (Cajanus cajan L.). BMC Plant Biol. 10: 45

    Article  PubMed Central  PubMed  Google Scholar 

  • Roesti J, Barton CJ, Albrecht S, Dupree P, Pauly M, Findlay K, Roberts K, Seifert GJ. 2007. UDP-glucose 4-epimerase isoforms UGE2 and UGE4 cooperate in providing UDPgalactose for cell wall biosynthesis and growth of Arabidopsis thaliana. Plant Cell 19: 1565–1579

    Article  Google Scholar 

  • Romualdi C, Bortoluzzi S, D’alessi F, Danieli GA. 2003. IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol. Genomics 12: 159–162

    CAS  PubMed  Google Scholar 

  • Saxena KB, Mula MG, Sugui FP, Layaoen HL, Domoguen RL, Pascua ME, Mula RP, Dar WD, Gowda CLL, Kumar RV, Eusebio JE. 2010. Pigeonpea: A Resilient Crop for the Philippine Drylands. Information Bulletin No. 85, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), India, p 8

    Google Scholar 

  • Scheible WR, Pauly M. 2004. Glycosyltransferases and cell wall biosynthesis: Novel players and insights. Curr. Opin. Plant Biol. 7: 285–295

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3: 1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Sekhar K, Priyanka B, Reddy VD, Rao KV. 2010. Isolation and characterization of a pigeonpea cyclophilin (CcCYP) gene, and its over-expression in Arabidopsis confers multiple abiotic stress tolerance. Plant Cell Environ. 33: 1324–1338

    CAS  PubMed  Google Scholar 

  • Setter TL, Yan J, Warburton M, Ribaut JM, Xu Y, Sawkins M, Buckler ES, Zhang Z, Gore MA. 2010. Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought. J. Exp. Bot. 62: 701–716

    Article  PubMed  Google Scholar 

  • Teulat B, Monneveux P, Wery J, Borries C, Souyris I, Charrier A, This D. 1997. Relationship between relative water content and growth parameters under water stress in barley: a QTL study. New Phytol. 137: 99–107

    Article  Google Scholar 

  • Tommasini L, Svensson JT, Rodriguez EM, Wahid A, Malatrasi M, Kato K, Wanamaker S, Resnik J, Close TJ. 2008. Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). Funct. Integr. Genomics 8: 387–405

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Penmetsa RV, Dutta S, Kulwal PL, Saxena RK, et. al. 2010. Pigeonpea genomics initiative (PGI): an international effort to improve crop productivity of pigeonpea (Cajanus cajan L.). Mol. Breed. 26: 393–408

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang CY, Chen YC, Jauh GY, Wang CS. 2005. A Lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiol. 139: 836–846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Y, He M, Zhu Z, Li S, Xu Y, Zhang C, Singer SD, Wang Y. 2012. Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol. 12: 140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu H, Choi HK, Cook DR, Shoemaker RC. 2005. Bridging model and crop legumes through comparative genomics. Plant Physiol. 137: 1189–1196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramesh Chapeyil Kumaran or Krishna Venkatarangaiah.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Deeplanaik, N., Kumaran, R.C., Venkatarangaiah, K. et al. Expression of drought responsive genes in pigeonpea and in silico comparison with soybean cDNA library. J. Crop Sci. Biotechnol. 16, 243–251 (2013). https://doi.org/10.1007/s12892-013-0069-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-013-0069-7

Key words

  • differentially expressed genes
  • drought stress
  • pigeonpea
  • qRT-PCR