Skip to main content
Log in

Antimicrobial and micro Raman spectroscopy of selected Zingiberaceae species from Northeast India

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Antimicrobial activity of crude rhizome oils from some important members of Zingiberaceae from Northeast India was carried out in the present study. The plants used were Curcuma amada, C. longa, Zingiber moran, and Z. zerumbet. Rhizomes of the four species were collected and rhizome oil was extracted using six different polar and non-polar solvents. The antimicrobial property of the crude oil was studied against human pathogens using disc-diffusion and viability assay. The rhizome oil of all the 24 extracts exhibited potent antimicrobial activity against all pathogenic bacterial and fungal strains tested. Hydrodistilled fractions of the four species studied showed better effect among all solvents. Water extract of Z. moran was found to be the highest effective antimicrobial agent of all. Antibacterial effect of the water fractions was also characterized against Gram-positive and Gram-negative bacteria using micro Raman spectroscopy. This investigation shows that the essential oils from the wild and domestic species of the family Zingiberaceae from Northeast India are a potential source of bioactive compounds with tremendous medicinal, economic, and therapeutic value. The wild and endemic species Z. moran represents an interesting and promising source of plant-derived antimicrobial agent in the development of new drugs against pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

CDA:

Czapek Dox agar

DMSO:

dimethyl sulfoxide

LSD:

least significant difference

MIC:

minimal inhibitory concentration

PDA:

potato dextrose agar

References

  • Ali BH, Blunden G, Tanira MO, Nemmar A. 2008. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe.): A review of recent research. Food Chem. Toxicol. 46: 409–420

    Article  PubMed  CAS  Google Scholar 

  • AOAC. 1995. Official Methods of Analysis, 16th edn. vol. 4: Association of Official Analytical Chemists. Washington, DC

    Google Scholar 

  • Nath A, Das A, Rangan L, Khare A. 2012. Screening of antimicrobial activity of Copper nanoparticles against pathogenic bacteria. Sci Adv. Mat. 4: 1–4

    Article  Google Scholar 

  • Bhavnani SM, Ballow CH. 2000. New agents for Gram-positive bacteria. Curr. Opin. Microbiol. 3: 528–534

    Article  PubMed  CAS  Google Scholar 

  • Bhuiyan MNI, Chowdhury JU, Begum J. 2009. Chemical investigation of the leaf and rhizome essential oils of Zingiber zerumbet (L.) Smith. from Bangladesh. Bangla. J. Pharmacol. 4: 9–12

    Google Scholar 

  • Burt S. 2004. Essential oils: their antibacterial properties and potential applications in foods: A review. Int. J. Food Microbiol. 94: 223–253

    Article  PubMed  CAS  Google Scholar 

  • Contois DE. 1959. Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous cultures. J. Gen. Microbiol. 21: 40–50

    PubMed  CAS  Google Scholar 

  • Denyer SP, Hugo WB. 1991. Biocide induced damage to the bacterial cytoplasmic membrane, InSP Denyer, WB Hugo, eds, Mechanism of action of chemical biocides. Society for Applied Bacteriology, Technical series no. 27, Oxford Blackwell scientific publication, Oxford, pp 171–188

    CAS  Google Scholar 

  • Gislene GFN, Juliana L, Paulo CF, Giuliana L. 2000. Antibacterial activity of plant extracts and phytochemicals on antibiotic resistant bacteria. Braz. J. Microbiol. 31: 247–256

    Google Scholar 

  • Grant KL, Lutz RB. 2000. Alternative therapies: ginger. Am. J. Health-System. Pharm. 57: 945–947

    CAS  Google Scholar 

  • Habsah M, Amran M, Mackeen MM. 2000. Screening of Zinigberaceae extracts for antimicrobial and antioxidant activities. J. Ethnopharmacol. 72: 403–410

    Article  PubMed  CAS  Google Scholar 

  • Holms WH. 1968. Viable counts of bacteria-A new method for facultative anaerobes. J. Gen. Microbiol. 54: 255–260

    PubMed  CAS  Google Scholar 

  • Indu MN, Hatha AAM, Avirosh C, Harsha U, Vivekanandan G. 2006. Antimicrobial activity of some of the south Indian species against serotypes of Escherchia coli, Salmonella paratyphi, Listeria monocytogenes and Aeromonas hydrophilla. Braz. J. Microbiol. 3(7): 153–158

    Article  Google Scholar 

  • Inouye S, Tsuruoka T, Watanbe N, Takeol K, Akao M, Nishiyama Y, Yamaguchi H. 2000. Inhibitory effect of essentials oils on apical growth of Aspergillus fumigatus by vapor contact. Mycoses 43: 17–23

    Article  PubMed  CAS  Google Scholar 

  • Jantan IB, Yassin MSM, Chin CB, Chen LL, Sim NL. 2003. Antifungal activity of the essential oils of nine Zingiberaceae species. Pharm. Biol. 41: 392–397

    Article  Google Scholar 

  • Kesari V, Das A, Rangan L. 2010. Physico-chemical characterization and antimicrobial activity from seed oil of Pongamia pinnata, a potential biofuel crop. Biom. Bioen. 34: 108–115

    Article  CAS  Google Scholar 

  • Kim M, Choi G, Lee H. 2003. Fungicidal property of Curcuma longa L. rhizome derived curcumin against phytopathogenic fungi in a greenhouse. J. Agric. Food Chem. 51: 1578–1581

    Article  PubMed  CAS  Google Scholar 

  • Langner E, Greifenberg S, Gruenwald J. 1998. Ginger: history and use. Adv. Ther. 15: 25–44

    PubMed  CAS  Google Scholar 

  • Lennette EH, Spaulding EH, Truant JP. 1974. Dilution test procedures, In: Manual of Clinical Microbiology, American Society for Microbiology, Washington, DC, pp 410–417

    Google Scholar 

  • Lindsay JG, Mark RR. 2007. Discrimination of bacteria and bacteriophages by Raman spectroscopy and surface enhanced Raman spectroscopy. Appl. Spectrosc. 61: 679–685

    Article  Google Scholar 

  • Maquelin K, Kirschner C, Choo-Smith LP, Van Den Braak L, Endtz HP, Naumann D, Puppels GJ. 2002. Identification of medically relevant microorganisms by vibrational spectroscopy. J. Microbiol. Methods 51: 255–271

    Article  PubMed  CAS  Google Scholar 

  • Mellow C, Ribeiro D, Nobaes F, Poppi RJ. 2005. Rapid differentiation among bacteria that cause gastroenteritis by use of low resolution Raman spectroscopy and PLS discriminant analysis. Anal. Bioanal. Chem. 383: 701–706

    Article  Google Scholar 

  • Naumann D. 2001. FT-infrared and FT-Raman spectroscopy in biomedical research. In B Gremlich, B Yan, Eds, Infrared and Raman Spectroscopy of Biological Materials Marcel Dekker, New York, NY, pp 323–377

    Google Scholar 

  • Norajit K, Laohakunjit N, Kerdchoechuen O. 2007. Antibacterial effect of five Zingiberaceae essential oils. Molecules 12: 2047–2060

    Article  PubMed  CAS  Google Scholar 

  • Parekh J, Chanda S. 2007. In vitro antimicrobial activity of Trapa natans L. fruit rind extracted in different solvents. Afr. J. Biotech. 6(6): 766–770

    Google Scholar 

  • Peter KS, Rosalyn LK, George LM, Kenneth JK. 2002. Metal oxide nanoparticles as bactericidal agents. Langmuir 18: 6679–6686

    Article  Google Scholar 

  • Sabulal B, Dan M, George V. 2006. Volatile constituents from the leaf oil of Ammomum muricatum Beddome. J. Essent. Oil Res. 18: 35–37

    Article  Google Scholar 

  • Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M, Bruni R. 2005. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem.91: 621–632

    Article  CAS  Google Scholar 

  • Sikkema J, de Bont JAM, Poolman B. 1994. Interaction of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 269: 8022–8028

    PubMed  CAS  Google Scholar 

  • Singh G, Singh OP, Maurya S. 2002. Chemical and biocidal investigations on essential oils of some Indian Curcuma species. Prog. Crystal Growth Character Mater. 45: 75–81

    Article  CAS  Google Scholar 

  • Srinivasan D, Nathan S, Suresh T, Perumalsamy L. 2001. Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine. J. Ethnopharmacol. 74: 217–220

    Article  PubMed  CAS  Google Scholar 

  • Thongson C, Davidson PM, Mahakarnchanakul W, Weiss J. 2004. Antimicrobial activity of ultrasound-assisted solvent-extracted species. Lett. Appl. Microbiol. 39(5): 401–406

    Article  PubMed  CAS  Google Scholar 

  • Yin MC, Cheng WS. 1998. Inhibition of Aspergillus niger and Aspergillus flavus by some herbs and spices. J. Food Protect. 61: 123–125

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latha Rangan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, A., Kesari, V., Nath, A. et al. Antimicrobial and micro Raman spectroscopy of selected Zingiberaceae species from Northeast India. J. Crop Sci. Biotechnol. 16, 75–81 (2013). https://doi.org/10.1007/s12892-011-0019-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-011-0019-1

Key words

Navigation